• Title/Summary/Keyword: PMSM(Permanent Magnet Synchronous Motor)

Search Result 393, Processing Time 0.022 seconds

A Study on Sensorless Control of PMSM using Sliding Mode Observer in high speed range (슬라이딩 모드 관측기를 이용한 고속 영역에서의 PMSM 센서리스 제어에 관한 연구)

  • Kang K.L.;Kim Jang-Mok;Lee S.H.;Hwag K.B.;Kim K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.745-749
    • /
    • 2003
  • The iterative sliding mode observer is proposed to control sensorless PMSM(Permanent Magnet Synchronous Motor). Proposed sliding mode observer has the character which is robust to the disturbance and parameter variation. Low pass filter with the variable cutoff frequency is also proposed to compensate rotor angle, it is led to saving memory and minimizing operation time. Experimental results shows that the proposed sliding mode observer leads to the proper performance.

  • PDF

Analysis and a Compensation Method for Torque Ripple caused by Position Sensor Error in PMSM's Vector Control (PMSM의 벡터제어시 위치센서 오차에 의해 발생하는 토오크 리플에 대한 해석과 그 보상 방법)

  • Lee, J.M.;Mok, H.S.;Choe, G.H.;Kim, S.H.;Cho, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.205-207
    • /
    • 2007
  • Position information is very important when driving the Permanent Magnet Synchronous Motor(PMSM). Generally, resolver is used to obtain exact position information. However, it generates periodic position errors due to the transformer ratio difference and excitation signal distortion. When the vector control is done with the position information that includes position error, torque ripple is periodically generated. This paper proposes the solution through analysis of above problem. Also, it’s validity is verified by simulation and experiment.

  • PDF

Speed and Position Estimation Method for PMSM with Low-Resolution Hall-Effect Sensors (저 분해능 홀센서를 이용한 영구자석 동기 전동기의 속도 및 위치 추정기법)

  • Ahn, H.J.;Lee, D.M.
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.114-115
    • /
    • 2014
  • This paper proposes a new speed and position estimation method for PMSM(Permanent Magnet Synchronous Motor) using low-resolution hall-effect sensors. In general, there are a variety of sensors to estimate rotor position for PMSM such as resolvers, and encoders. Position detection using hall-effect sensors that detect the flux of the rotor for rotor position is excellent method in terms of cost and space, but has low-resolution. To overcome this problem, this paper proposes a new speed and position estimation observer. The performance of the observer has been verified by simulations carried out using Matlab/Simulink.

  • PDF

Model-Free Adaptive Integral Backstepping Control for PMSM Drive Systems

  • Li, Hongmei;Li, Xinyu;Chen, Zhiwei;Mao, Jingkui;Huang, Jiandong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1193-1202
    • /
    • 2019
  • A SMPMSM drive system is a typical nonlinear system with time-varying parameters and unmodeled dynamics. The speed outer loop and current inner loop control structures are coupled and coexist with various disturbances, which makes the speed control of SMPMSM drive systems challenging. First, an ultra-local model of a PMSM driving system is established online based on the algebraic estimation method of model-free control. Second, based on the backstepping control framework, model-free adaptive integral backstepping (MF-AIB) control is proposed. This scheme is applied to the permanent magnet synchronous motor (PMSM) drive system of an electric vehicle for the first time. The validity of the proposed control scheme is verified by system simulations and experimental results obtained from a SMPMSM drive system bench test.

Stabilization Method for V/f Control with a MTPA operation of PMSMs (PMSM의 MTPA 운전이 가능한 V/f 제어 시 안정화 기법)

  • Park, Seung-Chan;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.404-405
    • /
    • 2019
  • 본 논문에서는 PMSM(Permanent magnet synchronous motor)의 MTPA(Maximum Torque Per Ampere) 운전을 고려한 V/f 제어 시 안정화 기법에 대해 제안한다. PMSM은 V/f 제어 시 부하 변동에 따라 탈조할 가능성이 있다. 제안된 기법은 안정도 개선을 위해 추정된 q축 전류를 이용하여 부하 변동정보를 얻고 이를 바탕으로 고정자 주파수를 변동하여 회전자 속도가 동기속도를 유지할 수 있는 안정화 기법을 적용하였다. 제안된 안정화 기법으로 저속 영역부터 약자속 영역까지 부하변동에도 안정적인 운전이 가능하도록 하였다. 1kW SPMSM의 모의실험을 통하여 제안된 기법의 효용성을 검증하였다.

  • PDF

Speed Ripple Based Mechanical Angle Estimation Scheme for Smooth Stop Control of Reciprocating Compressor (왕복동 압축기의 부드러운 정지 제어를 위한 속도 맥동 기반의 기계 각 추정 방식)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.298-301
    • /
    • 2021
  • A mechanical angle estimator is presented in this study to achieve the sensorless control of permanent magnet synchronous motor (PMSM) used in driving a reciprocating compressor. Braking the PMSM at a specific mechanical angular position is critical for the silent stoppage of the reciprocating compressor. The performance of conventional mechanical angle observers used in reciprocating compressor drives can be seriously affected according to gains of the speed controller because such observers rely on the magnitude of current ripples. A speed ripple-based mechanical angle estimator is proposed to solve this problem. Experimental results showed the effectiveness of the proposed method.

Design Observable Model of Direct Drive Motor for Air Gap Estimation when Input Disturbance is Impulse signal (외란이 충격 신호일 때 공극 추정을 위한 직구동 모터의 관측 가능한 수학적 모델 수립)

  • Ki, Tae-Seok;Park, Youn-Sik;Park, Young-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.627-631
    • /
    • 2012
  • Observable mathematical model of DDM (Direct Dirve Motor) was suggested. The motor that operates the object system directly is called DDM. DDM has many strong points, however, it has a significant disadvantage, that it is more sensitive to the external force than the motor with reduction gear. In other word, if the force is applied, air gap of the motor can be perturbed. This causes not only difficulty in motor control but also even more serious problem, such as the breakdown of motor. However, if the air gap variation can be estimated, it can help prevent these problems. DDM should be modeled to estimate the air gap variation. The type of researched DDM is PMSM (Permanent Magnet Synchronous Motor) and precedent model of PMSM includes only characteristics of electro-magnetic system and rotational motion. However, suggested model should also include characteristics of translational motion of rotor to estimate the air gap variation. Also, this model should satisfy observability condition, because state observer is designed based on this model.

PMSM Sensorless Control using Parallel Reduced-Order Extended Kalman Filter (병렬형 칼만 필터를 사용한 영구 자석 동기 전동기의 센서리스 제어)

  • Jang, Jin-Su;Park, Byoung-Gun;Kim, Tae-Sung;Lee, Dong-Myung;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.336-343
    • /
    • 2008
  • This paper proposes a novel sensorless control scheme for a Permanent Magnet Synchronous Motor (PMSM) by using a parallel reduced-order Extended Kalman Filter. The proposed scheme can obtain rotor position and speed by back-EKF that is estimated by reduced-order ETD and save computation time great)y due to using a parallel structure that works by turns every sampling time. Therefore, proposed scheme has merits of conventional EKF, and problems of parameter sensitivity are partially overcome. And proposed scheme can safely estimate rotor speed and position by using new algorithms according to driving regions. Experimental results show the validity of the proposed estimation technique, and to verify the merit of the proposed scheme, a comparison of a new reduced-order EKF algorithm with a conventional EKF algorithm has been also made in terms of computation time.

The Characteristics Analysis of a PMSM with Current Angle Variations according to Stator Winding Arrangements (전류위상 변화 시 고정자 권선방법에 따른 이중 3상 영구자석 동기 전동기의 특성 해석)

  • Kim, Tae Heoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.441-445
    • /
    • 2020
  • A Permanent Magnet Synchronous Motor (PMSM) for an electrical power steering system (EPS) is adopting various dual three-phase type stator windings to get the high fault tolerance capability when the motor runs at the failure condition. In this paper, we analyze the effects of stator winding arrangements on the characteristics such as torque and efficiency of the PMSM with leading and lagging current angle variations using finite element method. As a result, the most valuable design criteria are proposed to select stator winding method. Especially, we suggest the most appropriate winding method in terms of torque and efficiency, extending constant output area and decreasing noise and torque ripples.

Study on the High Efficiency Design through the Loss Reduction of the 110kW Class High-output Density PMSM (110kW급 고출력 밀도형 PMSM의 손실 저감을 통한 고효율 설계에 대한 연구)

  • Jun, Hyun-Woo;Park, Eung-Seok;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.954-959
    • /
    • 2015
  • In this paper, 110kW high output density, high efficiency Permanent Magnet Synchronous Motor which can be applied on tram’s traction system is introduced, along with its output and loss characteristics. The motor model is 2pole 18slot model and its size has been reduced through the high speed for high output density. Especially, structure and retainer sleeve structure is applied to its structure, which is also appropriate for high speed rotation. This kind of structure has eddy current loss problem on the surface of rotor, which must be reduced for high output density design. This study has designed the most optimized additional design parameter in order to improve the output characteristics and efficiency of previous produced 2pole 18 slot 110kW motor model and how the width of airgap affects from the loss perspective is mainly analyzed. Finally, the analysis on the extent of the efficiency improvement effect compared to the previous model has performed through electromagnetic FEM analysis. The influence of airgap flux density distribution has also been thoroughly examined.