• Title/Summary/Keyword: PMSM(Permanent Magnet Synchronous Motor)

Search Result 393, Processing Time 0.024 seconds

New Sensorless Control of PMSM using Reactive Power (무효전력을 이용한 영구자석 동기전동기의 새로운 센서리스 제어)

  • Han, Yoon-Seok;Choi, Jung-Soo;Kim, Young-Seok;Shin, Jae-Wha
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.237-239
    • /
    • 2001
  • This paper presents a new speed sensorless control method of permanent magnet synchronous motors based on instantaneous reactive power. The proposed system is constructed in a synchronously rotating reference frame and is very simple. The new approach is not dependent upon the stator resistance, nor is it affected by mechanical motor parameters. The effectiveness of the proposed system is confirmed by the simulation results.

  • PDF

A MTPA Control of SPMSMs Considering Core Losses (철손을 고려한 SPMSM의 MTPA 제어)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.426-427
    • /
    • 2018
  • 본 논문에서는 철손을 고려한 SPMSM(Surface mounted Permanent Magnet Synchronous Motor)의 모델로부터 출력 토크를 향상시킬 수 있도록 하는 개선된 MTPA(Maximum Torque Per Ampere) 제어 기법을 제안하였다. d축 전류를 0으로 사용하는 SPMSM의 기존 MTPA 제어 방식보다 철손을 고려한 MTPA 전류로 운전하는 제안된 방식이 더 큰 출력 토크를 얻을 수 있음을 800W PMSM에 대한 시뮬레이션을 통해 확인하였다.

  • PDF

Performance Improvement of a PMSM Sensorless Control Algorithm Using a Stator Resistance Error Compensator in the Low Speed Region

  • Park, Nung-Seo;Jang, Min-Ho;Lee, Jee-Sang;Hong, Keum-Shik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.485-490
    • /
    • 2010
  • Sensorless control methods are generally used in motor control for home-appliances because of the material cost and manufactureing standard restrictions. The current model-based control algorithm is mainly used for PMSM sensorless control in the home-appliance industry. In this control method, the rotor position is estimated by using the d-axis and q-axis current errors between the real system and a motor model of the position estimator. As a result, the accuracy of the motor model parameters are critical in this control method. A mismatch of the PMSM parameters affects the speed and torque in low speed, steadystate responses. Rotor position errors are mainly caused by a mismatch of the stator resistance. In this paper, a stator resistance compensation algorithm is proposed to improve sensorless control performance. This algorithm is easy to implement and does not require a modification of the motor model or any special interruptions of the controller. The effectiveness of the proposed algorithm is verified through experimental results.

Calculation of Self and Mutual Inductances in Multi-Phase Permanent Magnet Synchronous Motor (다상 영구자석 동기 전동기의 자기 및 상호 인덕턴스 계산)

  • Lee, Cheewoo
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A multi-phase electric machine has gained distinct interest due to its high reliability compared to a three-phase structure, and in this paper, self and mutual inductances in a five-phase permanent magnet synchronous machine (PMSM) are estimated by an analytical method. Recently, most of high-performance operations are implemented by field oriented control and/or direct torque control, and inductance for those controls is one of the key parameters in the voltage equation of phase windings. Winding function theory (WFT) is employed to calculate the inductance of phase windings, and it is verified that the result of the analytical method has a deviation of approximately 3 % compared to finite element analysis. Finally, in this paper, the way to obtain direct and quadrature inductance values are introduced from the analytical inductance calculated by WFT.

Sensorless Control for a PM Synchronous Motor in a Single Piston Rotary Compressor

  • Cho Kwan-Yuhl
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • A sensorless control for an IPM (Interior Permanent Magnet) synchronous motor in a single piston rotary compressor is presented in this study. The rotor position is estimated from the d-axis and q-axis current errors between the real system and a motor model of the position estimator. The torque pulsation of the single piston rotary compressor is compensated to reduce speed ripples, as well as, mechanical noise and vibration. The proposed sensorless drive enables the compressor to operate at a lower speed which increases energy savings and reduces mechanical noise. It also gives high speed operations by a flux weakening control for rapid air-cooling and heating of the heat pump air-conditioners.

Sensorless Speed Control of PMSM for Driving Air Compressor with Position Error Compensator (센서리스 위치오차보상기능을 가지고 있는 공기압축기 구동용 영구자석 동기모터의 센서리스 속도제어)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.104-111
    • /
    • 2018
  • The sensorless control of high efficiency air compressors using a permanent magnet type synchronous motor as an oil-free air compressor is quite common. However, due to the nature of the air compressor, it is difficult to install a position sensor. In order to control the permanent magnet type synchronous motor at variable speed, the inclusion of a position sensor to grasp the position of the rotor is essential. Therefore, in order to achieve sensorless control, it is essential to use a permanent magnet type synchronous motor in the compressor. The position estimation method based on the back electromotive force, which is widely used as the sensorless control method, has a limitation in that position errors occur due either to the phase delay caused by the use of a stationary coordinate system or to the estimated back electromotive force in the transient state caused by the use of a synchronous coordinate system. Therefore, in this paper, we propose a method of estimating the position and velocity using a rotation angle tracking observer and reducing the speed ripple through a disturbance observer. An experimental apparatus was constructed using Freescale's MPU and the feasibility of the proposed algorithm was examined. It was confirmed that even if a position error occurs at a certain point in time, the position correction value converges to the actual vector position when the position error value is found.

Optimal PAM Control for a Buck Boost DC-DC Converter with a Wide-Speed-Range of Operation for a PMSM

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Senjyu, Tomonobu;Yona, Atsushi;Saber, Ahmed Yousuf
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.477-484
    • /
    • 2010
  • A pulse width modulation-voltage source inverter (PWM-VSI) is used for variable speed permanent magnet synchronous motor (PMSM) drives. The PWM-VSI fed PMSM has two major disadvantages. Firstly, the PWM-VSI DC-link voltage limits the magnitude of the PMSM terminal voltage. As a result, the motor speed is restricted. Secondly, in a low speed range, the PWM-VSI modulation index declines. This is caused by a high DC-link voltage and a low terminal voltage ratio. As a result, the distortion of the voltage command and the stator current are increased. This paper proposes an optimal pulse amplitude modulation (PAM) control which can adjust the inverter DC-link voltage by using a buck-boost DC-DC converter. At a low speed range, the proposed system can reduce the distortion of the voltage command, which improves the stator current waveform. Also, the allowable speed range is extended. In order to verify the proposed method, experimental results are provided to confirm the simulation results.

Full Digital Speed Control of Permanent Magnet Synchronous Motor Drive Using DSP (DSP를 이용한 영구자석형 동기전동기의 전 디지탈 속도 제어)

  • Kim, Kyeong-Hwa;Park, Jae-Woo;Bae, Jung-Do;Chung, Se-Kyo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.591-594
    • /
    • 1994
  • In the high performance AC motor drive system, exact torque and speed control is required For exact torque and speed control, good current controller is prerequisite. In this paper, predictive current control scheme for PMSM is presented and implemented using DSP. Full digital speed controller for PMSM is constructed its usefulness is verified.

  • PDF

A PMSM Motion Control System with Direct Torque Control (직접토크제어에 의한 PMSM의 위치제어 시스템)

  • 김남훈
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.615-619
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) vector drives with a direct torque control(DTC) using the 16bit DSP TMS320F240 The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent control for motors which can be yield enhanced operation fewer system components lower system cost increased efficiency and high performance The system presented are stator flux and torque observer of stator flux feedback model that inputs are current and voltage sensing of motor terminal and angle for a low speed operating area two hysteresis band controllers an optimal switching look-up table and IGBT voltage source inverter by using fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

Vector control of Monorail PMSM traction motor using the hall-effect sensor (홀센서를 이용한 모노레일 PMSM 견인전동기의 벡터제어)

  • Son, Dong-Hyeok;Kim, Myoung-Su;Choi, Da-Woon;Cho, Yun-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1366-1370
    • /
    • 2010
  • This paper supposes the vector control algorithm to estimate the rotor position of permanent magnet synchronous traction motor using the hall-effect sensor. The hall-effect provides 60 electrical degrees resolution in rotor position sensing and it is very low resolution. The algorithm makes resolution high as optical encoders or electromagnetic resolver. If necessary, the reference rotor position angle is controlled by adjusting the variable. When a rotor position sensor such as either a optical encoder or a electromagnetic resolver is misalignment, it is useful to align with those. The method on adjusting the reference rotor position angle can compensate for misalignment error degrees by 60 electrical degrees.

  • PDF