• Title/Summary/Keyword: PMSM(Permanent Magnet Synchronous Motor)

Search Result 393, Processing Time 0.027 seconds

Integrated Model of Power Electronics, Electric Motor, and Gearbox for a Light EV

  • Hofman, Isabelle;Sergeant, Peter;Van den Bossche, Alex;Koroglu, Selim;Kesler, Selami
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1640-1653
    • /
    • 2015
  • This study presents a model of a drivetrain for an integrated design of a light electric vehicle (EV). For the drivetrain of each front wheel of the single-person, battery-powered EV tricycle consists of a battery, an inverter, and an outer rotor permanent magnet synchronous motor (PMSM), which is connected to an in-wheel gearbox. The efficiency of the inverter, motor, and gearbox is analyzed over the New European Driving Cycle. To calculate the losses and efficiency of the PMSM, the power electronics in the inverter and gearbox are used. The analytical models provide a fast, but less accurate result, useful for optimization purposes. To accurately predict the efficiency of the PMSM, a finite element model is used. The models are validated by test setups. Correspondingly, a good agreement between the measurements and the calculated results is achieved. A parameter study is performed to investigate the influence of the detailed component parameters (i.e., outer rotor radius, gear ratio, and number of pole pairs and stator slots) on the average efficiency of the drivetrain.

New Sensorless Control Strategy for a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시무효전력을 이용한 영구자석 동기전동기의 새로운 센서리스 제어)

  • 최양광;김영석;한윤석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • The mechanical informations such as the rotor speed and angle are required to operate the Cylindrical Permanent Magnet Synchronous Motor(PMSM). A resolver or encoder is typically used to supply the mechanical informations. This position sensor adds length to the machine, raises system cost, increases rotor inertia and requires additional devices. As the result, there has been a significant interest in the development of sensorless strategies to eliminate the position sensor. This paper presents an implementation of the new sensorless speed comtrol scheme for a PMSM. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimations error, the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

Adaptive Backstepping Controller Design for a Permanent Magnet Synchronous Motor using Speed Observer (속도관측기를 활용한 영구자석동기전동기의 적응 백스테핑 제어기 설계)

  • 현근호;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.347-353
    • /
    • 2003
  • A nonlinear speed controller for a surface mounted permanent magnet synchronous motor (PMSM) based on a newly developed adaptive backstepping approach is presented To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe the speed and track the reference speed signal generated by a reference model.

An Adaptive Fuzzy Based Control applied to a Permanent Magnet Synchronous Motor under Parameter and Load Variations (ICCAS 2004)

  • Kwon, Chung-Jin;Kim, Sung-Joong;Won, Kyoung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1168-1172
    • /
    • 2004
  • This paper presents a speed controller based on an adaptive fuzzy algorithm for high performance permanent magnet synchronous motor (PMSM) drives under parameter and load variations. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by adaptive fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained. Simulation results show the usefulness of the proposed controller.

  • PDF

A Detecting Method of Initial Rotor Position for Permanent Magnet Synchronous Motor (영구자석 동기전동기의 회전자 초기위치 검출법)

  • Ahn, Jun-Young;You, Wan-Sik;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2136-2138
    • /
    • 1997
  • This paper describes a new detecting method of initial rotor position for PMSM without a position sensors. The proposed method uses the fact that the back-EMF is differently generated according to tile initial rotor position of Permanent Magnet Synchronous Motor (PMSM). The voltage with short duty is impressed to each phase at standstill. Then, we can detect the rotor position by comparing the amplitudes and signs of three phase current each other. Experimental results show the validity of the proposed method.

  • PDF

Steady State and Dynamic Response of a State Space Observer Based PMSM Drive with Different Controllers

  • Gaur, Prerna;Singh, Bhim;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.280-290
    • /
    • 2008
  • This paper deals with an investigation and evaluation of the performance of a state observer based Permanent Magnet Synchronous Motor (PMSM) drive controlled by PI (Proportional Integral), PID (Proportional Integral and Derivative), SMC (sliding mode control), ANN (Artificial neural network) and FLC (Fuzzy logic) speed controllers. A detailed study of the steady state and dynamic performance of estimated speed and angle is given to demonstrate the capability of the controllers.

Optimal Design of an In-Wheel Permanent Magnet Synchronous Motor for mobile robot (로봇 구동용 In wheel 영구자석 동기전동기의 코깅 토크 저감을 위한 영구자석 최적 설계)

  • Shin, Dong-Joo;Yang, Byoung-Yull;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.688_689
    • /
    • 2009
  • This paper presents a multi-objective optimal design process for an in-wheel permanent magnet synchronous motor (PMSM) for high performance. In order to improve the characteristics of the PMSM such as the cogging torque, torque ripple and the back-EMF, the modified Taguchi method and the response surface method (RSM) are utilized. In addition, results of the proposed model are compared with the initial design and it is verified by 2D FEM.

  • PDF

A Novel Efficiency Optimization Strategy of IPMSM for Pump Applications

  • Zhou, Guangxu;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.515-520
    • /
    • 2009
  • According to the operating characteristics of pump applications, they should exhibit high efficiency and energy saving capabilities throughout the whole operating process. A novel efficiency optimization control strategy is presented here to meet the high efficiency demand of a variable speed Permanent Magnet Synchronous Motor (PMSM). The core of this strategy is the excellent integration of mended maximum torque to the current control algorithm, based on the losses model during the dynamic and the grade search method with changed step by fuzzy logic during the steady. The performance experiments for the control system of a variable speed high efficiency PMSM have been completed. The test results verified that the system can reliably operate with a different control strategy during dynamic and steady operation, and the system exhibits better performance when using the efficiency-optimization control.

Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network (RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어)

  • 김은태;이성열
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.243-250
    • /
    • 2003
  • In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Because the RBF NN disturbance observer which estimates the variation of a system parameter and a load torque is employed, the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is carried out to verify the effectiveness of the proposed method.

Initial Pole Position Estimation of a Magnetic Pole Sensorless Permanent Magnet Synchronous Motor (자극센서 없는 영구자석 동기전동기의 초기 자극위치 추정)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.127-131
    • /
    • 2003
  • This paper describes an initial pole position estimation method of a magnetic pole sensorless permanent magnet synchronous motor(PMSM) with an incremental encoder, The accurate initial pole position is estimated by using an efficient numerical method of Secant Method, which finds either of two zero torque/force positions and then the correct d-axis. It can be simply applicable to both rotary and linear PMSM because it only requires the tuned current controller and the relative position information. The experimental results show the validity of the proposed method with respect to highly accurate pole position estimation under the moderate moving distance and convergence time.

  • PDF