• Title/Summary/Keyword: PMN-PT single crystals

Search Result 24, Processing Time 0.022 seconds

Analysis and verification of the characteristic of a compact free-flooded ring transducer made of single crystals (압전단결정을 이용한 소형 free-flooded ring 트랜스듀서의 성능 특성 예측 및 검증)

  • Im, Jongbeom;Yoon, Hongwoo;Kwon, Byungjin;Kim, Kyungseop;Lee, Jeongmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.278-286
    • /
    • 2022
  • In this study, a 33-mode Free-Flooded Ring (FFR) transducer was designed to apply piezoelectric single crystal PIN-PMN-PT, which has high piezoelectric constants and electromechanical coupling coefficient. To ensure low-frequency high transmitting sensitivity characteristics with a small size of FFR transducer, the commercial FFR transducer based on piezoelectric ceramics was compared. To develop the FFR transducer with broadband characteristics, a piezoelectric segmented ring structure inserted with inactive elements was applied. The oil-filled structure was applied to minimize the change of acoustic characteristics of the ring transducer. It was verified that the transmitting voltage response, underwater impedance, and beam pattern matched the finite element numerical simulation results well through an acoustic test. The difference in the transmitting voltage response between the measured and the simulated results is about 1.3 dB in cavity mode and about 0.3 dB in radial mode. The fabricated FFR transducer had a higher transmitting voltage response compared to the commercial transducer, but the diameter was reduced by about 17 %. From this study, it was confirmed that the feasibility of a single crystal-applied FFR transducer with compact size and high-power characteristics. The effectiveness of the performance prediction by simulation was also confirmed.

The 33-mode Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal under Stress and Electric Field (압축하중 및 전계 인가에 따른 PIN-PMN-PT 단결정의 33-모드 유전 및 압전특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.91-96
    • /
    • 2020
  • The 33-mode dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric single crystals were measured under large electric field and compressive stress. The phase transition from the low temperature rhombohedral to the high temperature tetragonal structure was observed in the range of 110~140℃, and the Curie temperature changing to the cubic structure was about 165℃. The polarization change according to the compressive stress and electric field was measured. Relative dielectric constant was calculated from the slope of the polarization curve applied to the electric field, and the calculated relative dielectric constant increased as the applied stress increased, and the relative dielectric constant decreased as the applied electric field increased. The strain according to the compressive stress and electric field change was measured, the piezoelectric constant was calculated from the slope of the curve, and the phase transition according to the application of pressure was confirmed. In the case of practical application as an underwater or medical ultrasonic actuator, it is necessary to properly design the magnitude of the compressive stress applied to the device and the DC bias in order to maintain linear driving.

Effect of Electrical Field on the Phase Transformation of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Single Crystals (단결정 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 의 상전이에 미치는 전장의 영향)

  • Lee, Eun-Gu
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.329-333
    • /
    • 2013
  • The structural phase transformations of $0.7Pb(Mg_{1/3}Nb_{2/3})O_3-0.3PbTiO_3$ (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)${\rightarrow}$tetragonal (T)${\rightarrow}$rhombohedral (R) phase was observed in zero-field-cooled conditions; and a $C{\rightarrow}T{\rightarrow}$monoclinic $(M_C){\rightarrow}$ monoclinic ($M_A$) phase was observed in the field-cooled conditions. The transformation of T to $M_A$ phase was realized through an intermediate $M_C$ phase. The results also represent conclusive and direct evidence of a $M_C$ to $M_A$ phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a $R{\rightarrow}M_A{\rightarrow}M_C{\rightarrow}T$ phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the $M_A$ phase was stable at room temperature. With increasing the field, the transformation temperature from T to $M_C$ and from $M_C$ to $M_A$ phase decreased, and the phase stability ranges of both T and $M_C$ phases increased. Upon removal of the field, the phase transformation from R to $M_A$ phase was irreversible, but from $M_A$ to $M_C$ was reversible, which means that $M_A$ is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.

Optimization Study for Material Properties of Piezoelectric Material Using Parameter Estimation Method: Part I. Polycrystal PZT Ceramics (매개변수 평가법을 이용한 압전재료의 재료물성 최적화 연구 Part I. 다결정 PZT 세라믹스)

  • Shin, Ho-Yong;Lee, Ho-Yong;Hong, Il-Gok;Kim, Jong-Ho;Im, Jong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.471-479
    • /
    • 2022
  • Recently, piezoelectric devices, such as ultrasonic surgery, ultrasonic atomizer, and ultrasonic speaker, are analyzed and designed by finite element simulation methods. However, the discrepancy between the design and the experiment results of the device typically occurs due to the inaccuracy of the piezoelectric material properties. To improve the simulation accuracy, the material properties of the PZT ceramics were better refined using parameter estimation method. The material parameters are elastic stiffness cEij and piezoelectric constant eij of PZT ceramics. The impedance curve characteristics for the LTE mode of PZT ceramics were calculated. The mismatch between the simulation and the experimental data were compared and minimized by a least square method. Finally, the simulated impedance data were compared with the experimental data for the various vibration modes of PZT ceramics and the optimized material properties of PZT ceramics were verified. To further verify the accuracy, this method was also applied to piezoelectric PMN-PT single crystals.