• Title/Summary/Keyword: PMMA material

Search Result 234, Processing Time 0.019 seconds

Image Based Quality Assurance of Range Compensator for Proton Beam Therapy (양성자치료용 보상체의 영상기반 정도 관리 기반 프로그램 개발)

  • Kim, Jin-Sung;Yoon, Myong-Geun;Kim, Dong-Wook;Lim, Young-Kyung;Kwak, Jung-Won;Park, So-Ah;Shin, Dong-Ho;Shin, Jung-Wook;Lee, Se-Byeong;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • The main benefit of proton therapy over photon beam radiotherapy is the absence of exit dose, which offers the opportunity for highly conformal dose distributions to target volume while simultaneously irradiating less normal tissue. For proton beam therapy two patient specific beam modifying devices are used. The aperture is used to shape the transverse extension of the proton beam to the shape of the tumor target and a patient-specific compensator attached to the block aperture when required and used to modify the beam range as required by the treatment plan for the patient. A block of range shifting material, shaped on one face in such a way that the distal end of the proton field in the patient takes the shape of the distal end of the target volume. The mechanical quality assurance of range compensator is an essential procedure to confirm the 3 dimensional patient-specific dose distributions. We proposed a new quality assurance method for range compensator based on image processing using X-ray tube of proton therapy treatment room. The depth information, boundaries of each depth of plan compensatorfile and x-ray image of compensator were analyzed and presented over 80% matching results with proposed QA program.

  • PDF

A SHEAR BOND STRENGTH OF RESIN CEMENT BONDED TO HUMAN UNCUT ENAMEL, CUT ENAMEL, AND DENTIN IN VITRO

  • Lee Jong-Yeop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.319-324
    • /
    • 2003
  • Statement of problem. Adhesives in dentistry playa major role in the success of restorative treatments. In the treatment of all ceramic restoration it is needed to find the adequate bond strength between enamel and dentin. Purpose. The purpose of this study was to evaluate shear bond strength of resin cement bonded to extracted human uncut enamel, cut enamel, and dentin in vitro. Material and methods. Ten freshly extracted anterior teeth without any previous restorative treatments were chosen. The extracted teeth were embedded in PMMA cold acrylic in the shape of a cylinder, 25 mm in diameter by 25 mm in height. The bonding system used was as follow: Uni-Etch (32% phosphoric acid), One-Step adhesive, Duolink resin cement. The specimens were acid etched and rinsed with water. Two layers of One-Step adhesive were coated with a disposable brush on the uncut enamel. VIP curing light at $500mV/cm^2$ was used to cure the adhesive. For cut enamel shear bond test, the specimen used for uncut enamel was further reduced approximately $0.3{\sim}0.5mm$ using a laminate preparation diamond bur (0.3 mm in depth). The specimens were subsequently treated with 320-grit SiC paper followed by 600-grit SiC paper and cleaned with distilled water. The bonding procedure on the cut enamel was same as uncut enamel bonding procedure. For dentin bonding test, the specimen used for cut enamel was further reduced approximately $0.5mm{\sim}1.0mm$ using a laminate preparation diamond bur (0.5 mm in depth of diamond cutting). The amount of reduction was evaluated with the silicone mold. The specimens were subsequently treated with 320-grit SiC paper followed by 600-grit silicon carbon paper and cleaned in distilled water. The bonding procedure on the dentin was same as uncut enamel bonding procedure. All samples were mounted and secured on the Ultradent shear bond test sample holder, and Ultradent restricted shear bond testing device was used with Universal Instron machine until fracture. Analysis of variance (ANOVA) test was performed comparing the result at P<0.05. Multiple comparison (Tukey) was used to compare each groups. Result. The result showed that the mean value in shear bond strength of resin cement bonded to uncut enamel, cut enamel and dentin were 27.04 Mpa, 30.25 Mpa and 26.39 Mpa with respect. Conclusion. Within the limitation of this study, the mean value of the shear bond strength of cut enamel was higher than those of uncut enamel or dentin. However there existed no statistical differences between three different human dentition substrates due to increased adhesive characteristics.

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees (대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석)

  • 김봉주;이성재;권순용;탁계래;이권용
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.401-410
    • /
    • 2003
  • This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.