• 제목/요약/키워드: PMM test

검색결과 34건 처리시간 0.024초

선박 초기설계단계에서 CFD를 이용한 천수 중 조종성능 추정에 관한 연구 (A Study on Estimation of Manoeuvring Performance in Shallow Water using CFD in Initial Ship Design Phase)

  • 김인태;김상현;김현준;김동영;양정규
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.350-360
    • /
    • 2018
  • Analysis of ship's manoeuverability in shallow water is an important task from the perspective of the vessels' navigational safety. Since the number of ships operated in restricted water has increased due to the enlargement of vessels and ships represent different characteristics of the manoeuverability when operated in shallow and deep water, it is significant to evaluate ship manoeuverability at initial design stage. At the initial stage of design, the estimation of manoeuverability is generally performed with hydrodynamic coefficients estimated based on empirical formula. However, the accuracy of estimating hydrodynamic coefficients by the empirical formula in shallow water is poor compared to that in deep water. Therefore, the error in the estimation of manoeuverability increases in shallow water. In this study, CFD is proposed to improve the accuracy of manoeuverability in shallow water at the initial design stage and hydrodynamic coefficients were obtained based on PMM test in shallow water. Furthermore, the ship manoeuverability was estimated both the proposed strategy and the empirical formula. At last, validity of the proposed strategy using CFD for the estimation of manoeuverability was confirmed by comparison with the manoeuverability estimation results from model test.

가상 구속모형시험을 이용한 선박 조종성능 평가 (Prediction of Ship Manoeuvring Performance Based on Virtual Captive Model Tests)

  • 성영재;박상훈
    • 대한조선학회논문집
    • /
    • 제52권5호
    • /
    • pp.407-417
    • /
    • 2015
  • For the more accurate prediction on manoeuvring performance of a ship at initial design phase, bare hull manoeuvring coefficients were estimated by RANS(Reynolds Averaged Navier-Stokes) based virtual captive model tests. Hydrodynamic forces and moment acting on the hull during static drift and harmonic oscillatory motions were computed with a commercial RANS code STAR-CCM+. Automatic and consistent mesh generation could be implemented by using macro functions of the code and user dependency could be greatly reduced. Computed forces and moments on KCS and KVLCC 1&2 were compared with the corresponding measurements from PMM(Planar Motion Mechanism) tests. Quite good agreement can be observed between the CFD and EFD results. Manoeuvring coefficients and IMO standard manoeuvres estimated from the computed data also showed reasonable agreement with those from the experimental data. Based on these results, we could confirm that the developed virtual captive manoeuvring model test process could be applied to evaluate manoeuvrability of a ship at the initial hull design phase.

Flap 타를 채택한 선박의 조종성능 특성 (Maneuvering Performances of a Ship with Flap Rudder)

  • 이호영;신상성;박홍식;박종환
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제4권1호
    • /
    • pp.70-74
    • /
    • 2001
  • 본 논문에서는 특수타를 채용한 선박과 일반타를 장착한 선박에 대하여 구속모형시험을 통하여 비교 연구를 실시하였다. 구속모형시험은 일반타가 장착된 경우와 특수타가 장착된 경우에 대하여 수행되었고, 조종수학 모델링은 Abkowitz 수학 모델을 통하여 유체력 미계수를 구하여 조종운동을 시뮬레이션하였다. 연구 결과에 의하면 플랩(Flap) 타를 채택한 경우에 선회성능은 아주 향상되는 것을 확인하였다.

  • PDF

비선형 관측기를 이용한 무인잠수정의 유체동역학 계수 추정 (Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers)

  • 김준영
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.24-34
    • /
    • 2006
  • Hydrodynamic coefficients strongly affect the dynamic performance of an AUV. Thus, it is important to know the true values of these coefficients, in order to accurately simulate the AUV's dynamic performance. Although these coefficients are generally obtained experimentally, such as through the PMM test, the measured values are not completely reliable because of experimental difficulties and errors. Another approach, by which these coefficients can be obtained, is the observer method, in which a model-based estimation algorithm estimates the coefficients. In this paper, the hydrodynamic coefficients are estimated using two nonlinear observers: a sliding mode observer and an extended Kalman filter. Their performances are evaluated in Matlab simulations, by comparing the estimated coefficients obtained from the two observer methods, with the experimental values as determined from the PMM test. A sliding mode controller is constructed for the diving and steering maneuver by using the estimated coefficients. It is demonstrated that the controller, applied with the estimated values, maintains the desired depth and path with sufficient accuracy.

Efficacy Test of Polycan, a Beta-Glucan Originated from Aureobasidium pullulans SM-2001, on Anterior Cruciate Ligament Transection and Partial Medial Meniscectomy-Induced-Osteoarthritis Rats

  • Kim, Joo-Wan;Cho, Hyung-Rae;Ku, Sae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.274-282
    • /
    • 2012
  • The object of this study was to assess the efficacy of Polycan from Aureobasidium pullulans SM-2001, which is composed mostly of beta-1,3-1,6-glucan, on osteoarthritis (OA)-induced by anterior cruciate ligament transection and partial medial meniscectomy (ACLT&PMM). Three different dosages of Polycan (85, 42.5, and 21.25 mg/kg) were orally administered once a day for 84 days to male rats a week after ACLT&PMM surgery. Changes in the circumference and maximum extension angle of each knee, and in cartilage histopathology were assessed using Mankin scores 12 weeks after Polycan administration. In addition, cartilage proliferation was evaluated using bromodeoxyuridine (BrdU). As the result of ACLT&PMM, classic OA was induced with increases in maximum extension angles, edematous knees changes, and capsule thickness, as well as decreases in chondrocyte proliferation, cartilages degenerative changes, and loss of articular cartilage. However, these changes (except for capsule thickness) were markedly inhibited in all Polycan- and diclofenac sodium-treated groups compared with OA control. Although diclofenac sodium did not influence BrdU uptake, BrdU-immunoreactive cells were increased with all dosages of Polycan, which means that Polycan treatment induced proliferation of chondrocytes in the surface articular cartilage of the tibia and femur. The results obtained in this study suggest that 84 days of continuous oral treatment of three different dosages of Polycan led to lesser degrees of articular stiffness and histological cartilage damage compared with OA controls 91 days after OA inducement, suggesting that the optimal Polycan dosage to treat OA is 42.5 mg/kg based on the present study.

A numerical study on hydrodynamic maneuvering derivatives for heave-pitch coupling motion of a ray-type underwater glider

  • Lee, Sungook;Choi, Hyeung-Sik;Kim, Joon-Young;Paik, Kwang-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.892-901
    • /
    • 2020
  • We used a numerical method to estimate the hydrodynamic maneuvering derivatives for the heave-pitch coupling motion of an underwater glider. It is very important to assess the hydrodynamic maneuvering characteristics of a specific hull form of an underwater glider in the initial design stages. Although model tests are the best way to obtain the derivatives, numerical methods such as the Reynolds-averaged Navier-Stokes (RANS) method are used to save time and cost. The RANS method is widely used to estimate the maneuvering performance of surface-piercing marine vehicles, such as tankers and container ships. However, it is rarely applied to evaluate the maneuvering performance of underwater vehicles such as gliders. This paper presents numerical studies for typical experiments such as static drift and Planar Motion Mechanism (PMM) to estimate the hydrodynamic maneuvering derivatives for a Ray-type Underwater Glider (RUG). A validation study was first performed on a manta-type Unmanned Undersea Vehicle (UUV), and the Computational Fluid Dynamics (CFD) results were compared with a model test that was conducted at the Circular Water Channel (CWC) in Korea Maritime and Ocean University. Two different RANS solvers were used (Star-CCM+ and OpenFOAM), and the results were compared. The RUG's derivatives with both static drift and dynamic PMM (pure heave and pure pitch) are presented.

컨테이너 운반선의 조종성능에 미치는 선미 부가물과 선미형상의 효과에 관한 실험적 연구 (An Experimental Study on the Effects of Afterbody Appendages and Hull Form on the Manoeuvrability of a Container Carrier)

  • 이호영;염덕준
    • 대한조선학회논문집
    • /
    • 제35권3호
    • /
    • pp.38-45
    • /
    • 1998
  • 본 논문에서는 계열 모형시험을 통하여, 길이/폭 비가 작은 컨테이너선의 조종성능에 미치는 선미 부가물, 타 및 선미형상의 효과에 대해서 조사 연구되었다. 타, 선미부가물과 선미형상을 변화시키면서 각 경우에 대하여 타 단독시험과 PMM 시험이 수행되었다. 실험적으로 구한 유체력 미계수와 일본에서 개발된 MMG 수학모형을 사용하여 조종성능 해석을 수행하였다. 그 결과 선미형상의 변화와 선미벌브 밑부분에 부가물을 부착시키는 것이 불안정한 선박의 방향안정성을 향상시키는데 있어 가장 효과적이었다.

  • PDF

수중운동체의 잠수심도에 따른 수평면내 조종성능 변화에 대한 실험적 연구 (An Experimental Study of the Submerged Depth Effect on the Manoeuvrability in a Horizontal Plane of an Underwater Vehicle)

  • 설동명;이기표;여동진
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.551-558
    • /
    • 2005
  • In this paper, horizontal manoeuvrability of an underwater vehicle near free surface was investigated. Planar Motion Mechanism(PMM) tests were performed at the shallow depth within 4.5 times of vehicle's diameter. Hydrodynamic coefficients related to the horizontal movement were estimated from the measured data using Least SQuare(LS) method and analyzed at each submerged depth. Furthermore, horizontal dynamic stability, trajectory of turning and zigzag test were investigated for the various depths. As underwater vehicle is positioned nearer to the free surface, forces increase and moment decreases. Tested model was found to be stable only at the depth 0.5 times of vehicle's diameter.

구속모형시험을 통한 잠수함 선형의 수상 조건 조종성능 추정 연구 (Prediction of Maneuverability of a Submarine at Surface Condition by Captive Model Test)

  • 권창섭;김동진;이영연;김연규;윤근항;조성록
    • 대한조선학회논문집
    • /
    • 제59권6호
    • /
    • pp.423-431
    • /
    • 2022
  • In this paper, the results of Planar Motion Mechanism (PMM) test for a 1/15 scaled model of the MARIN Joubert BB2 submarine is dealt with to derive the maneuvering coefficients for surface condition. For the depth of surface navigation, the top of the sail was exposed 0.46 m above the water surface in the model scale, and it corresponds to 6.9 m in the full scale. The resistance and self-propulsion tests were conducted, and the model's self-propulsion point was obtained for 1.328 m/s, which corresponded to 10 knots in the full scale. The maneuvering tests were performed at the model's self-propulsion point, and the maneuvering coefficients were obtained. Based on the maneuvering coefficients, a turning simulation was performed for starboard 30 degree of stern fins. The straight-line stability and control effectiveness in the horizontal plane were analyzed using the maneuvering coefficients and compared with the appropriate range. For the analysis of the neutral fin angle of the X-type stern fin, the stern fin test with drift angles was carried out. As a result, the flow straightening effect at lower and upper parts of the stern fin was discussed.

Manta 형상 무인잠수정의 설계과정 및 제어실험에 관한 연구 (A Study on Design Process and Control Test of Manta-type Unmanned Underwater Test Vehicle)

  • 변승우;임종국;김준영
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.152-155
    • /
    • 2009
  • 본 논문에서는 Manta 형상 무인잠수정의 자유항주모델을 설계하였고 이를 이용하여 제어실험을 실시하였다. 제작된 MUUTV모형은 직진방향으로 1개의 추진기를 가지고 있으며, 승강타와 방향타를 이용하여 수심 및 방향 제어를 실시하게된다. MUUTV는 수심제어시 사용되는 수심을 측정하기 위한 압력센서, 방향제어를 위해 방향각 측정을 위한 마그네틱 컴파스가 설치되어있으며, 잠수정의 전체적인 운용을 위한 Windows XP기반의 소형 On-board PC104가 장착되어있다. 시뮬레이션에 사용된 6자유도 운동모델은 PMM실험과 이론적 추정을 통해 얻어진 유체동역학계수와 파라미터를 이용하여 구성된다. 잠수정의 운동성능과 제어응답을 비교하기 위해 PID, 슬라이딩모드, 퍼지, 제어기가 설계되었으며, 이를 통해 제어 성능을 비교하고자 하였다. 또한 제작된 모델을 이용하여 수심 및 방향제어 실험을 수조에서 실시하였다.

  • PDF