• 제목/요약/키워드: PM10 Air Monitoring

검색결과 304건 처리시간 0.031초

자기회귀오차모형을 이용한 평택시 PM10 농도 분석 (Analysis of PM10 Concentration using Auto-Regressive Error Model at Pyeongtaek City in Korea)

  • 이훈자
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.358-366
    • /
    • 2011
  • The purpose of this study was to analyze the monthly and seasonal PM10 data using the Autoregressive Error (ARE) model at the southern part of the Gyeonggi-Do, Pyeongtaek monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables. The six meteorological variables are daily maximum temperature, wind speed, amount of cloud, relative humidity, rainfall, and global radiation. The four air pollution variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result shows that monthly ARE models explained about 17~49% of the PM10 concentration. However, the ARE model could be improved if we add the more explanatory variables in the model.

PMF 모델을 이용한 수도권 내 3개 도시에서의 PM10 오염원의 기여도 추정 (Estimation of PM10 Source Contributions on Three Cities in the Metropolitan Area by Using PMF Model)

  • 이태정;허종배;이승묵;김신도;김동술
    • 한국대기환경학회지
    • /
    • 제25권4호
    • /
    • pp.275-288
    • /
    • 2009
  • The Korean government strengthened the environmental polices to manage and enhance Metropolitan Area air quality, and also has enforced "Special Act on Seoul Metropolitan Air Quality Improvement (SASMAQI)" issued in Dec. 2004. Recently government expanded the Seoul Metropolitan Air Quality Management District (SMAQMD) to the outskirts satellite cities of Seoul area through the "Revised Law Draft of SASMAQI". The SMAQMD has been alloted the allowable emission loads to the local governments on the basis of the carrying $PM_{10}$ capacity. However, in order to establish the effective air quality control strategy for $PM_{10}$, it is necessary to understand the corresponding sources which have a potential to directly impact ambient $PM_{10}$ concentration. To deal with the situations, many receptor methodologies have been developed to identify the origins of pollutants and to determine the contributions of sources of interests. The objective of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions at the metropolitan area. $PM_{10}$ samples were simultaneously collected at the 3 semi-industrialized local cities in the Seoul metropolitan area such as Hwasung-si, Paju-si, and Icheon-si sites from April 15 to May 31, 2007. The samples collected on the teflon membrane filter by one $PM_{10}$ cyclone sampler were analyzed for trace metals and soluble ions and samples on the quartz fiber filter by another sampler were analyzed for OC and EC. Source apportionment study was then performed by using a positive matrix factorization (PMF) receptor model. A total of 6 sources were identified and their contributions were estimated in each monitoring site. Contribution results on Hwasung, Paju, and Icheon sites were as follows: 33%, 27%, and 27% from soil source, 26%, 26%, and 21% from secondary aerosol source, 11%, 11%, and 12% from biomass burning, 12%, 6%, and 5% from sea salt, 7%, 15%, and 19% from industrial related source, and finally 11%, 15%, and 16% from mobile and oil complex source, respectively. This study provides information on the major sources affecting air quality in the receptor sites and thus it will help to manage the ambient air quality in the metropolitan area by establishing reasonable control strategies, especially for the anthropogenic emission sources.

농업지역(밭) 암모니아 등 대기오염물질 계절별 모니터링 연구 (Study on the Emission Characteristics of Air Pollutants from Agricultural Area)

  • 김민욱;김진호;김경식;홍성창
    • 한국환경농학회지
    • /
    • 제40권3호
    • /
    • pp.211-218
    • /
    • 2021
  • BACKGROUND: Fine particulate matter (PM2.5) is produced by chemical reactions between various precursors. PM2.5 has been found to create greater human risk than particulate matter (PM10), with diameters that are generally 10 micrometers and smaller. Ammonia (NH3) and nitrogen oxides (NOx) are the sources of secondary generation of PM2.5. These substances generate PM2.5 through some chemical reactions in the atmosphere. Through chemical reactions in the atmosphere, NH3 generates PM2.5. It is the causative agent of PM2.5. In 2017 the annual ammonia emission recorded from the agricultural sector was 244,335 tons, which accounted for about 79.3% of the total ammonia emission in Korea in that year. To address this issue, the agricultural sector announced the inclusion of reducing fine particulate matter and ammonia emissions by 30% in its targets for the year 2022. This may be achieved through analyses of its emission characteristics by monitoring the PM2.5 and NH3. METHODS AND RESULTS: In this study, the PM2.5 concentration was measured real-time (every 1 hour) by using beta radiation from the particle dust measuring device (Spirant BAM). NH3 concentration was analyzed real-time by Cavity Ring-Down Spectroscopy (CRDS). The concentrations of ozone (O3) and nitrogen dioxide (NO2) were continuously measured and analyzed for the masses collected on filter papers by ultraviolet photometry and chemiluminescence. CONCLUSION: This study established air pollutant monitoring system in agricultural areas to analyze the NH3 emission characteristics. The amount of PM2.5 and NH3 emission in agriculture was measured. Scientific evidence in agricultural areas was obtained by identifying the emission concentration and characteristics per season (monthly) and per hour.

미세먼지가 울산지역 초등학생의 폐기능에 미치는 영향 (Effects of Fine Particles on Pulmonary Function of Elementary School Children in Ulsan)

  • 유승도;차정훈;김대선;이종태
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.365-371
    • /
    • 2007
  • To evaluate the effect of air pollution on respiratory health in children, We conducted a longitudinal study in which children were asked to record their daily levels of Peak Expiratory Flow Rate(PEFR) using potable peak flow meter(mini-Wright) for 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in year, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of $PM_{10}$ and $PM_{2.5}$ over the study period were $64.9{\mu}g/m^3$ and $46.1{\mu}g/m^3$, respectively. The range of daily measured PEFR in this study was $182{\sim}481\;l/min$. Daily mean PEFR was regressed with the 24-hour average $PM_{10}(or\;PM_{2.5})$ levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of $PM_{10}$ or $PM_{2.5}$ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min(95% CI -1.8, 0.1) decline in PEFR. Even though this study showed negative findings on the relationship between respiratory function and air particles, it was worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely resulted in misclassification of true exposure levels and this was the first Korean study that $PM_{2.5}$ measurement was applied as an index of air quality.

관측 기반 지상 대기오염물질 농도와 대기혼합고의 변동성 및 상관관계 분석 (Analysis of the Variability and Correlation between Ground-Level Air Pollutant Concentrations and Atmospheric Mixing Layer Height based on Observations)

  • 김현경;정희정;박정민;신혜정;이그림;이규영;김해리;엄준식
    • 대기
    • /
    • 제34권3호
    • /
    • pp.283-304
    • /
    • 2024
  • This study analyzed the variability and correlation between ground-level air pollutant concentrations and the atmospheric mixing layer height using data from four types of air pollutants (PM2.5, PM10, NO2, and O3) collected at AirKorea monitoring stations nationwide over a five-year period (2018~2022), and aerosol backscatter data observed by the Vaisala CL31 to derive atmospheric mixing layer heights. The five-year trends and variability of ground-level air pollutant concentrations under seasonal and hourly conditions were examined, as well as the seasonal distribution and diurnal variation of the atmospheric mixing layer height. Five correlation coefficient methodologies were applied to analyze the correlations between ground-level air pollutants and atmospheric mixing layer height under various seasonal and hourly conditions, confirming the dilution effect of the atmospheric mixing layer height. The results showed that PM2.5, PM10, and NO2 generally had negative correlations with the atmospheric mixing layer height, while O3 showed a strong positive correlation up to an altitude of 1,200~1,500 meters, and a negative correlation beyond that altitude. It was also shown that a single high concentration event (e.g., PM10) can alter the overall correlation. The correlation can also vary depending on the characteristics of the correlation coefficient methodology, highlighting the importance of applying the appropriate methodology for each case during the analysis process.

육계사 내 작업자의 미세먼지 노출량 현장모니터링 (Concentrations of Particulate Matter Exposed to Farm Workers in the Broiler Houses)

  • 서효재;오병욱;김효철;신소정;서일환
    • 한국농공학회논문집
    • /
    • 제62권5호
    • /
    • pp.27-37
    • /
    • 2020
  • As domestic meat consumption increases, the broiler production industry has been larger and denser. The concentration of particulate matter (PM) and harmful gases generated is also increasing inside livestock house. However, the current research status of PM exposed to farm workers and the health effects are in the early stage. To understand PM concentration affecting workers in the broiler house, field monitoring was conducted according to its size distributions. Concentrations of PM10, PM2.5, and TD (Total Dust) were monitored using personal air samplers with teflon filter during working and moving periods considering the ventilation systems of 6 broiler houses. The purpose of this study is to monitor the PM concentration in the experimental broiler houses operated by forced ventilation system generally used in Korea and to evaluate the regional concentrations through airflow pattern. The PM concentrations were increased from inlet to outlet vents resulting in 1,872 of TD, 1,385 of PM10, and 209 ㎍/㎥ of PM2.5, respectively. The TD and PM10 concentrations were increased when the workers and broilers were moving. Among them, the particle size that occupied the largest amount of PM was 13.75 ㎛. These results suggest that personal protection equipments are important to reduce the health effect from PM inhalation.

대구지역 대기 중 PM-10과 PM-2.5의 농도분포 특성 (Distribution Characteristics of the Concentration of Ambient PM-10 and PM-2.5 in Daegu Area)

  • 도화석;최수진;박민숙;임종기;권종대;김은경;송희봉
    • 대한환경공학회지
    • /
    • 제36권1호
    • /
    • pp.20-28
    • /
    • 2014
  • 대구지역의 13개 대기오염측정소 중 PM-10과 PM-2.5를 동시에 측정하는 3개 측정소 즉, 공업지역에 위치한 이현동, 주거지역에 위치한 만촌동, 도로변에 위치한 평리동 측정소를 대상으로 최근 2년간(2011~2012)의 자료를 이용하여 PM-10과 PM-2.5의 농도분포 특성을 연구하였다. PM-10 농도는 이현동($52.5{\mu}g/m^3$)과 평리동($60.9{\mu}g/m^3$) 모두 연평균 기준치인 $50{\mu}g/m^3$을 초과하였고, 만촌동($44.9{\mu}g/m^3$)은 기준치를 만족하였다. PM-2.5 농도는 세 지점 모두 미국의 EPA 연간기준치($15{\mu}g/m^3$)를 초과하였으며, 우리나라에서 2015년부터 시행되는 PM-2.5의 연평균기준치($25{\mu}g/m^3$)도 초과하는 수준이었다. 계절별 변화를 보면, PM-10은 봄철 > 겨울철 > 가을철 > 여름철 순이었고, PM-2.5는 겨울철 > 봄철 > 가을철 > 여름철 순으로 나타나는 특성을 보였다. 월변화 특성을 보면, PM-10과 PM-2.5 모두 겨울철인 2월에 가장 높고 여름철인 9월경에 가장 낮은 농도를 보였다. 일변화 특성을 보면, PM-10과 PM-2.5 모두 오전 7시부터 증가하여 10시~11시경에 최고 농도를 기록하고 오후 6시까지 하강하여 저녁과 새벽까지 일정한 농도를 나타내는 경향을 보였다. 또한, 주중의 미세먼지 농도는 주말보다 높은 농도를 보였으며, 그 변동 폭은 공업지역이 주거지역보다 크게 나타났다. PM-2.5/PM-10 비는 여름철이 높고 봄철이 가장 낮게 나타났고, 황사발생시 PM-2.5/PM-10 비는 비황사시 0.54~0.64에 비해 0.32~0.42로 매우 낮은 특성을 보였다. 본 자료는 대구지역의 미세먼지(PM-10, PM-2.5)의 현황과 특성에 대한 연구로써 향후 미세먼지의 연구 및 대기오염 관리에 유용하게 사용될 것으로 사료된다.

실내 미세먼지 측정을 위한 저가형 PM 센서의 실험실/현장 평가 및 보정 방법 (Laboratory/Field evaluation and calibration method of low-cost PM sensor for indoor PM2.5, PM10 measurement)

  • 김도헌;신동민;황정호
    • 한국입자에어로졸학회지
    • /
    • 제18권4호
    • /
    • pp.109-127
    • /
    • 2022
  • Recently, low-cost particulate matter (PM) sensors have been widely used in monitoring mass concentration. Maintaining the accuracy of the sensors is important and requires rigorous performance evaluation and calibration. In this study, two commercial low-cost PM sensors(LCS), Plantower PMS3003 and Plantower PMS7003, were evaluated in the laboratory and field with a reference-grade PM monitor (GRIMM 11-D). Laboratory evaluation was conducted with single/mixed particles of PSL (Poly Styrene Latex) in an acrylic chamber at 20℃ and relative humidity of 20%. Field evaluation was conducted inside a building of Yonsei University (Shinchon) from February 12 to March 31, 2022. In both evaluations, LCS measured values became different from reference measured values when the relative humidity was high or the outdoor air PM10/PM2.5 ratio was high. Based on the field evaluation, the LCS measured values were corrected through four different regression analysis models. As a result, the multivariate polynomial regression analysis model showed highest matching with the reference PM monitor (PM2.5 >0.9, PM10 >0.85). In this model, the PM10/PM2.5 ratio and relative humidity were chosen as independent variables.

불산 누출 사고 시 불산에 노출된 식물잎을 이용한 대기 중 불화수소 농도 추정 (Estimation of the Concentration of HF in the Atmosphere Using Plant Leaves Exposed to HF in the Site of the HF Spill)

  • 임봉빈;김선태
    • 한국대기환경학회지
    • /
    • 제32권3호
    • /
    • pp.248-255
    • /
    • 2016
  • The leaves of three plant species, such as soybean, raspberry, and kudzu, exposed to hydrogen fluoride was collected in an area surrounding an emission source where the release accident occurred. The ultrasonic-assisted extraction and analysis of fluoride by ion chromatography was carried out. The mean concentration of fluoride in the leaves of three plant species exposed to hydrogen fluoride was $5,409{\pm}1,198mg\;F/kg\;dry\;wt$ and $788{\pm}339mg\;F/kg\;dry\;wt$, respectively. The mean fluoride concentration in ambient air were estimated to be $2.36{\pm}0.65mg/m^3$ ($2.89{\pm}0.79ppm$) and $0.35{\pm}0.15mg/m^3$ ($0.43{\pm}0.19ppm$) in exposed and unexposed sites, respectively. It seems likely that the passive monitoring using plant leaves could identify with respect to plant risk by fluoride in atmosphere.

INAA.ICP.AAS를 이용한 대기먼지 $(PM_{10})$의 다원소분석 (Multielement Analysis in Airborne Particulate Matter $(PM_{10})$ by INAA, ICP and AAS)

  • 정용삼;문종화;정영주;박광원;이길용;윤윤열;심상권;조경행;한명섭
    • 한국대기환경학회지
    • /
    • 제15권4호
    • /
    • pp.495-503
    • /
    • 1999
  • Airborne particulate matter $(PM_{10})$ collected using high volume air sampler and silica fiber filter were analyzed by Instrumental Neutron Activation Analysis(INAA), Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES) and Atomic Absorption Spectrometry(AAS), and the results were compared with each other. 30~40 trace elements in environmental standard reference materials(NIST SRM 1648 and NIES CRM No.8) were analyzed for the analytical quality control. The relative error for two-third of elements detected was less than 10%, and the standard deviation was less than 15%. During the sampling period for 24 hours, the mass concentration of total suspended particulate was 36.1$\mu\textrm{g}$/㎥ and the value is lower than the critical level in Korea. In the results of NAA, the elements of Al, As, Ba, Fe, La, Mg, Na, Sb, Zn were well agreed with those of other methods. In statistical estimation between different methods, the deviation of Al, Ba, Cr, Fe was less than 10% and quite reliable.

  • PDF