• Title/Summary/Keyword: PM-excited

Search Result 51, Processing Time 0.023 seconds

A Novel Stator Hybrid Excited Doubly Salient Permanent Magnet Brushless Machine for Electric Vehicles

  • Zhu Xiaoyong;Cheng Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.185-191
    • /
    • 2006
  • In this paper, a novel stator hybrid excited doubly salient permanent magnet (SHEDS-PM) brushless machine with a special magnetic bridge is proposed for the first time. The originality of this machine is purposely to add a magnetic bridge in shunt with each PM pole, which not only maintains the stator lamination in its entireness, but also amplifies the effect of DC field flux on PM flux. An equivalent magnetic circuit is presented to clarify the novelty. Based on the 2-D finite element analysis, the static characteristics of the SHEDS-PM machine, namely phase flux linkage, back-EMF, cogging torque, winding inductance and static torque are deduced. The corresponding results on a prototype machine illustrate that the proposed machine is promising for application to electric vehicles.

A study on the PM Excited Transverse Flux Linear Motor Position control by using the microstep method (Microstep방식을 이용한 영구자석 여자 횡축형 선형 전동기의 위치제어에 관한 연구)

  • Chea, Dae-Jik;Ahn, Ho-Gyun;Park, Seung-Kyu;Kim, Jong-Moo;Kang, Do-Hyun;Lim, Tae-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.235-239
    • /
    • 2002
  • In this paper, an PM Excited TFLM controller using Microprocessor was implement and the microstep method to control the PM Excited TFLM. In microstep method, current waveform is sinusoidal not square. This method is characterized by less vibrating, less noisy, and more precise position control. Also, we simulate the static characteristics for each waveform. The current tracks reference sinusoidal waveform well and stability was improved as we expected. Therefore, the possibility of the microstep method position control was propose.

  • PDF

Design of PM Excited Transverse Flux Linear Motor of Inner Mover Type

  • Kang Do-Hyun;Ahn Jong-Bo;Kim Ji-Won;Chang Jung-Hwan;Jung Soo-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.137-141
    • /
    • 2005
  • A transverse flux, PM-exited linear motor (TFM-LM) with inner mover was designed and built. Its output power density is higher and its weight is lower than those of the conventional PM exited linear synchronous motors (PM LSM). To obtain the maximum thrust force under the given volume, the thrust force density with respect to the ratio of the slot width and the length of pole pitch is analyzed by the 3-dimension finite element method (FEM). Finally, calculated static thrust forces was compared with the experimental values. The calculated and measured performance of the transverse flux, PM-exited linear motor with inner mover revealed great potential for system improvements by reducing the mass of the linear motor. For examples, when this motor was applied to a ropeless elevator, it was possible to increase the power density by more than 400% over the conventional PM-LSM. The results of this study recommend this type of motor for the ropeless elevator or gearless direct linear driving system.

Control Method for Minimizing Thrust Ripple of PM Excited Transverse Flux Linear Motor (영구자석 여자 횡축형 선형전동기의 추력맥동 저감 제어기법)

  • 안종보;강도현;김지원;정수진;임태윤;박준호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • Permanent magnet-excited transverse flux linear motor(TFLM) is known to have more excellent ratio of force to weight than any other linear motors. But, thrust generated by phase current is non-linear with regard to current and relative position like switched reluctance motor. This makes current and speed controller design difficult. This paper presents a method on minimization of thrust ripple of permanent magnet-excited transverse flux linear motor. Using genetic algorithm(GA), optimal current waveform can be found under the constraint conditions such as current limit, minimum of ohmic loss and limited rate of change of current etc. The effectiveness is verified through computer simulation and experimental test results.

Design and Evaluation of a Lung Assist Device for Patients with Acute Respiratory Syndrome using Hollow Fiber Membranes (중공사 막을 이용한 급성호흡곤란증후군 환자용 폐 보조 장치의 설계와 평가)

  • Lee, Sam-Cheol;Kwon, O-Sung;Kim, Ho-Cheol;Hwang, Young-Sil;Lee, Hyun-Cheol
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.224-232
    • /
    • 2005
  • The use of the lung assist device (LAD) would be well suited for acute respiratory failure (ARF) patients, combining the simplicity of mechanical ventilation with the ability of extracoporeal membrane oxygenators (ECMO) to provide temporary relief for the natural lungs. This study's specific attention was focused on the effect of membrane vibration in the LAD. Quantitative experimental measurements were performed to evaluate the performance of the device, and to identify membrane vibration dependence on blood hemolysis. We tried to decide upon excited frequency band of limit hemolysis when blood hemolysis came to through a membrane vibration action. The excited frequency of the module type 5, consisted of 675 hollow fiber membranes, showed the maximum gas transfer rate. We concluded that the maximum oxygen transfer rate seemed to be caused by the occurrence of maximum amplitude and the transfer of vibration to hollow fiber membranes. It was excited up to $25{\pm}5$ Hz at each blood flow rate of module type 5. We found that this frequency became the 2nd mode resonance riequency of the flexible in blood flow. Blood hemolysis was low at the excited frequency of $25{\pm}5$ Hz. Therefore, we decided that limit hemolysis frequency of this LAD was $25{\pm}5$ Hz.

An Experimental Study on Shaping Flat-Topped Element Patterns of a Multi-layered Disk Array Structure Excited by Cross-Dipole Elements (교차 다이폴 소자 여기에 의한 다층 원형 도체 배열 구조의 구형 빔 패턴 형성에 관한 실험적 연구)

  • 엄순영;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.712-720
    • /
    • 2003
  • In this paper, a multi-layered metallic disk array structure(MDAS) excited by cross-dipole elements was proposed for efficiently shaping of flat-topped element patterns(FTEP) with circular polarization. The MDAS excited by cross-dipole elements has advantages to decrease in volume and weight of an overall array antenna and so, it is appropriate for the FTEP applications of a ralativlely low frequency band. In order to verify the effectness of this structure, the MDAS breadboard operated at X-band(7.9 ∼ 8.4 GHz) was fabricated, and its design parameters were experimentally optimized on the basis of the previous design experience. The experimental results were shown that the MDAS could shape good FTEPs of ${\pm}$20$^{\circ}$beam width at least within a 6.1 % frequency band.

Ultrafast Excited State Intramolecular Proton Transfer Dynamics of 1-Hydroxyanthraquinone in Solution

  • Ryu, Jaehyun;Kim, Hyun Woo;Kim, Myung Soo;Joo, Taiha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.465-469
    • /
    • 2013
  • Proton transfer reaction is one of the most fundamental processes in chemistry and life science. Excited state intramolecular proton transfer (ESIPT) has been studied as a model system of the proton transfer, since it can be conveniently initiated by light. We report ESIPT reaction dynamic of 1-hydroxy-anthraquione (1-HAQ) in solution by highly time-resolved fluorescence. ESIPT time of 1-HAQ is determined to be $45{\pm}10$ fs directly from decay of the reactant fluorescence and rise of the product fluorescence. High time resolution allows observation of the coherent vibrational wave packet motion in the excited state of the reaction product tautomer. The coherently excited vibrational mode involves large displacement of the atoms, which shortens the distance between the proton donor and the acceptor. With the theoretical analysis, we propose that the ESIPT of 1-HAQ proceeds barrierlessly with assistance of the skeletal vibration, which in turn becomes excited coherently by the ESIPT reaction.

The Analysis of Varing Mover on PM Excited Transverse Flux Linear Motor for Compressor (이동자 형상 변화에 따른 압축기용 영구자석 여자 횡자속 선형 전동기의 특성해석)

  • Jeong, D.H.;Woo, B.C.;Kang, D.H.;Chang, J.H.;Kim, J.M.;Hong, D.K.;Park, G.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.150-152
    • /
    • 2005
  • On this study is PM excited transverse flux linear motor for compressor on an air condenser. The present day, it is general use for linear motor on compressor, so this paper conducted efficiency to compare with varing mover and stator's shape.

  • PDF

Drive Controller System in PM Motor with Independently Excited Winding for an Electric Bicycle (전기자전거용 독립여자권선 영구자석 전동기의 구동제어기 설계)

  • Choi, Jin-Wook;Son, Young-Dae;Kang, Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.175-177
    • /
    • 2007
  • This paper presents for the torque characteristics and improving the efficiency of driving system of electric bicycle which applied IEWPM(Independently Excited Winding Permanent Magnet) motor. IEWPM motor can expand the number of phase from 3 phases to multiphase like SRM motor because stator windings are unconnected directly. BLDC motor raise rotor'-s electromagnetic torque per unit volume by using Spoke type permanent magnet. By using two photo sensor per phase and applying excited width, advance angle and bipolar control, we confirmed higher torque at a low speed, higher out-put at a high speed, and efficiency improvement at a wide speed control area.

  • PDF

A Control of Vibrator Using PM Excited Transverse Flux Linear Motor (영구자석 여자 횡축형 선형 전동기(TFLM)를 이용한 가진기 제어)

  • 임태윤;강도현;김종무;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.281-288
    • /
    • 2002
  • This paper has realized a control system of a vibrator using PM excited Transverse Flux Linear Motor(TFLM). Proposed vibrator can supply a vibration force up to 700[N] at rated current, wide operation range of vibration displacement and high frequency for a tested structure. Also, volume of a vibrator system can be decreased because of a high trust force rato(a thrust force per weight=N/Kg). A proposed vibrator instead of a hydraulic vibrator can improve efficiency and have may advantages of maintenance and management. A desired value command is a vibration frequency and displacement in a controller for a vibrator system and a controlled values we a instant position and velocity of a mover Output value of the controller is phase current controlled by PWM converter. In this research, Dynamic simulation has been executed for analysis of a control algorithm and dvnauuc characteristics and is compared with experimental result.