• Title/Summary/Keyword: PM adsorption

Search Result 112, Processing Time 0.022 seconds

Comparison of Roughnesses of Polycrystalline Gold Electrode Calculated from STM Images, Oxygen Adsorption-Desorption and Adsorption of N-Docosyl-N'-methyl Viologen (STM 이미지와 산소 흡탈착 그리고 N-docosyl-N'-methyl viologen의 흡착으로부터 구한 다결정 금 전극 표면의 거칠기의 비교)

  • Lee Chi-Woo;Jang Jai-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.104-108
    • /
    • 2000
  • It is very important to know the real roughness of electrode surface in electrochemistry. But it is impossible to know absolute roughness of electrode surface for various reasons. In this work, we compared the roughnesses of polycrystalline gold electrode often used in electrochemistry calculated from the images of scanning tunneling microscopy (STM) and cyclic voltammetry with those of Au (111) and HOPG. The roughness of polycrystalline gold calculated from STM image was $1.1(\pm0.1)$, that from adsorption-desorption of oxygen was $2.4(\pm0.7)$ and that from adsorption of N-docosyl-N'-methyl viologen was $1.6(\pm0.1)$.

Triacetin이 탄소복합 필터의 연기성분 흡착능에 미치는 영향

  • 김정열;신창호;김종열
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.205-209
    • /
    • 1998
  • This study was conducted to evaluate the effect of triacetin(TA) treatment during manufacturing carbon dual filter for the adsorption of cigarette smoke components by activated carbons. The measurements were carried out by separation of activated carbon from carbon dual filter, and the specific surface area analyzed. The specific surface area of activated carbon from the domestic cigarette filter and from the foreign cigarette filter by degassing at 9$0^{\circ}C$ was 163$\pm$32$m^2$/g, and 16.6$\pm$1.9$m^2$/g, respectively. Those values were very lower than that of degassing at 35$0^{\circ}C$ (Domestic brand: 952$\pm$30$m^2$/g, and Foreign brand: 847$\pm$73$m^2$/g). By comparing the adsorption capacity of acetone and benzene with and without triacetin treated activated carbon, there was a 20% reduction of adsorption capacity by 5% triacetin treatment. Also, from the cilia toxicity test with carbon dual filter treated 0 % TA and 8 % TA, the cilia survival time was 706$\pm$74sec. and 603$\pm$64sec. for 0% TA and 8% TA, respectively. The delivery rate of vapour phase of cigarette smoke, which consists of main components of cilia toxicity, was higher at 8% TA filter than 0 % TA filter. Our results indicate that the treated TA covered the micro-pore of activated carbon, and then reduced specific surface area, finally, decreased the adsorption of vapour phase from cigarette smoke.

  • PDF

Effectiveness of gold nanoparticle-coated silica in the removal of inorganic mercury in aqueous systems: Equilibrium and kinetic studies

  • Solis, Kurt Louis;Nam, Go-Un;Hong, Yongseok
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • The adsorption of inorganic mercury, Hg (II), in aqueous solution has been investigated to evaluate the effectiveness of synthesized gold (Au) nanoparticle-coated silica as sorbent in comparison with activated carbon and Au-coated sand. The synthesis of the Au-coated silica was confirmed by x-ray diffraction (Bragg reflections at $38.2^{\circ}$, $44.4^{\circ}$, $64.6^{\circ}$, and $77.5^{\circ}$) and the Au loading on silica surface was $6.91{\pm}1.14mg/g$. The synthesized Au-coated silica performed an average Hg adsorption efficiency of ~96 (${\pm}2.61$) % with KD value of 9.96 (${\pm}0.32$) L/g. The adsorption kinetics of Hg(II) on to Au-coated silica closely follows a pseudo-second order reaction where it is found out to have an initial adsorption rate of $4.73g/{\mu}g/min/$ and overall rate constant of $4.73{\times}10^{-4}g/{\mu}g/min/$. Au-coated silica particles are effective in removing Hg (II) in aqueous solutions due to their relatively high KD values, rapid adsorption rate, and high overall efficiency that can even decrease mercury levels below the recommended concentrations in drinking water.

Environmental Risk Assessment of Polyhexamethyleneguanidine Phosphate by Soil Adsorption/Desorption Coefficient

  • Chang, Hee-Ra;Yang, Kyung-Wook;Kim, Yong-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.365-370
    • /
    • 2006
  • This study was performed to determine the adsorption-desorption characteristics of polyhexame-thyleneguanidine phosphate in three different soil types of textural classification. Adsorption and desorption studies is impotent for prediction their fate and generating essential information on the mobility of chemicals and their distribution in the soil, water and air of our biosphere. The detection limit of the test substance quantified by a spectroscopic method using Eosin indicator was $0.25{\mu}g/mL$. The reproducibility of analytical method was confirmed by the preliminary test. The concentrations of polyhexamethylenequanidine phosphate in aqueous solution were $1.36{\pm}0.09,\;2.45{\pm}0.01,\;and\;$4.25{\pm}0.05{\mu}g/mL$ by a spectroscopic method using Eosin indicator. The adsorption percents of polyhexamethylenequanidine phosphate in soil were greater than 95.2% for all three test soils. The desorption percents from the adsorbed soil were less than 4.5, 4.7 and 4.7%. Therefore, the adsorption coefficient (K) were greater than 110, 111 and 116. The adsorption coefficient calculated as a function of the organic carbon content (Koc) of the test soils were greater than 9,181, 11,100, and 8,942, respectively. Therefore, the test substance, polyhexamethylenequanidine phosphate could be concluded as medium or high adsorption (>25%) and poorly desorption (<75%) in soil media. Therefore, this chemical is likely to be retained in soil media and may not pose a risk in the aquatic environment.

Nonactivaed adsorption of $CH_3_Cl$ on Si(100)-2$\times$1 studied by LEED, AES and semiempirical method.

  • Lee, Junyoung;Kim, Sehun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.157-157
    • /
    • 2000
  • The adsorption processes of methyl chloride on Si(100)-2$\times$1 have been studied by low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and semiempirical PM3 calculations. The dissociative adsorption of the methyl chloride on Si(100) takes place without breaking of the silicon dimer with high efficiency. For adsorption at the room temperature, the existence of a precursor state is confirmed by the behavior of the sticking probability depending on the coverage and temperature. From AES measurements, the determined activation barrier of adsorption ($\Delta$ Hads) is -28.4 kj/mol. This results indicate that the dissociative process is nonactivated. The optimized precursor state of CH3Cl on the Si(100)-2$\times$1 surface was determined by PM3 calculations based on a cluster model.

  • PDF

An Estimation of Breakthrough Curve of Activated Carbon Adsorption Column (활성탄 흡착칼럼의 농도변화곡선 추정)

  • Yang, Ho-Yeon;Park, Chong-Mook;Song, Myung-Jae;Oh, Chang-Yong;Han, Neung-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.217-229
    • /
    • 2000
  • Adsorption equilibrium experiments for the phenol on granular activated carbon(16~25 mesh) and powder activated carbon(325 mesh) were carried out at $25{\pm}1^{\circ}C$ and the results were expressed with Freundlich isotherm. Adsorption rate experiments were executed in batch adsorption system under the condition that can be neglecting mass transfer resistance at the external surface of the particle. The results were analysed with the Miller's method to evaluate the linear driving force(LDF) adsorption rate constant. Fixed bed adsorption experiments were performed by adopting different flow rates in the activated carbon-phenol system at $25{\pm}1^{\circ}C$. The theoretical breakthrough curves were estimated with the simple constant pattern solution. The adsorption rate constant of LDF model was not a fixed value but variable with adsorption amount. The experimental results were better agreed with the estimation of breakthrough curve using the variable adsorption rate constant than the results estimated using the average fixed adsorption rate constant.

  • PDF

Desulfurization of Model Oil via Adsorption by Copper(II) Modified Bentonite

  • Yi, Dezhi;Huang, Huan;Li, Shi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.777-782
    • /
    • 2013
  • In order to further reduce the sulfur content in liquid hydrocarbon fuels, a desulfurization process by adsorption for removing dimethyl sulfide (DMS) and propylmercaptan (PM) was investigated. Bentonite adsorbents modified by $CuCl_2$ for the desulfurization of model oil was investigated. The results indicated that the modified bentonite adsorbents were effective for adsorption of DMS and PM. The bentonite adsorbents were characterized by X-ray diffraction (XRD) and thermal analysis (TGA). The acidity was measured by FT-IR spectroscopy. Several factors that influence the desulfurization capability, including loading and calcination temperature, were studied. The maximum sulfur adsorption capacity was obtained at a Cu(II) loading of 15 wt %, and the optimum calcination temperature was $150^{\circ}C$. Spectral shifts of the ${\nu}$(C-S) and ${\nu}$(Cu-S) vibrations of the complex compound obtained by the reaction of $CuCl_2$ and DMS were measured with the Raman spectrum. On the basis of complex adsorption reaction and hybrid orbital theory, the adsorption on modified bentonite occurred via multilayer intermolecular forces and S-M (${\sigma}$) bonds.

A Study on Adsorption of Lead(II) in Wastewater Using Natural Kaolinite (천연 고령토의 폐수 중 납 흡착에 관한 연구)

  • 이종은
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.3
    • /
    • pp.77-86
    • /
    • 1995
  • Lead(II) removal efficiency by natural kaolinite was investigated through laboratory experiments. This study was conducted in two phases-sorption and desorption. In the adsorption study, the influence of sorption kinetics and sorption isotherm and various parameters such as pH, temperature, coexisting other heavy metal ions on the lead adsorption was investigated. And desorption study was carried out in order to find the re-usability of kaolinite as an adsorbent. The results of the study are as follows. 1. Sorption kinetics was investigated under the condition of 2.5 mg/l adsorbent concentration, pH 6.5$\pm$0.05, temperature $30\pm 0.5\circ$C, initial lead(II) concentration 25 mg/l. Adsorption rate was initially rapid and the extent of adsorption arrived at adsorption equilibrium with 73% adsorption efficiency in an hour. 2. The sorption isotherm experiment was made with different initial lead(II) concentration. A linearized Freundlich equation was used to fit the acquired experimental data. As a result, Freundlich constants, the sorption intensity (1/n) was 0.47 and the measure of sorption (k) was 2.44. So, it was concluded that sorption of lead(II) by kaolinite is effective. 3. The effect of pH on lead(II) sorption by kaolinite shows that at a pH of 3, only 6% of the total lead(II) was adsorbed and at a pH 9, 97% of the lead(II) was removed. And the effect of temperature on lead(II) sorption by kaolinite shows that as the temperature increased, the amount of lead(II) sorption per unit weight of kaolinite increased. But the effect was minor (p<0.05). 4. Sorption isotherm of lead coexisting cadmium (II) or zinc (II) was lower than that of lead itself. It was caused by the result of competitive sorption to adsorption site. And there was no difference between the sorption isotherm of cadmium and zinc. 5. In desorption studies, only 5.12% desorption took place in distilled water, while 52.08% in 0.1 N hydrochloric acid. Consequently used kaolinite could be regenerated by hydrochoric acid.

  • PDF

The Appropriate Treatment and Reuse Ability Assessment of Pigment Wastewater by Physical, Chemical, and Biological Process (물리, 화학 및 생물학적 방법에 의한 안료폐수의 적정처리 및 재이용 가능성 평가)

  • 정종식;옥치상
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 1998
  • This study was conducted to assess the characteristics of plgment wastewater and the removal rates of appropriate treatment by physical, chemical and biological Process, and the possibility of reuse for effluent. Based on the results, the wastewater qualities of pigment were pH 5.1$\pm$3.4, temperature 43.0$\pm$ 15.$0^{\circ}C$, BOD 1,431.4$\pm$589.6mg/l, COD 2,282.8$\pm$466.5mg/l, turbidity 1,340$\pm$820NTU, color 243.0$\pm$147.0unit, Pb 36.5$\pm$9.5mg/l and $Cr^+6$ 10.3$\pm$ 1.3mg/l, respectively. The removal rates of adsorption by activated carbon and filter process were BOD 40.6% , COD 57.0% , turbidity 89.6%, color 87.2%, Pb 86.0% and $Cr^+6$ 10.6%, respectively. And the removal rates of reduction, neutralization, coagulation and aP floatation process were BOD 18.2%, COD 24.3%, turbidity 74.3%, color 56.7%, Pb 68.6% and $Cr^+6$ 97.8%, respectively. The removal rates of activated sludge process were BOD 95.9%, COD 86.0%, turbidity 27.8%, color 25. 2%. Pb 26.9% and $Cr^+6$ 50.0% , respectively. The total removal rates of treatment by physical, chemical and biological process were BOD 98.0% , COD 95.4%, turbidity 98.1%, color 95.8%, Pb 97.0% and $Cr^+6$ 99.0%, respectively. According to the test results for possibility of reuse with coagulation-adsorption by activated carbon process of effluent, COD was higher than that of raw water and others were similar to that of raw water thus, it Is considered to be reused.

  • PDF

Current research status and analysis methods on the effects of food surface properties on particulate matter adsorption (식품 표면 특성에 따른 미세먼지 흡착 연구 현황 및 분석 방법)

  • Lim, Dayoung;Park, Sun-Young;Lee, Dong-Un;Chung, Donghwa
    • Food Science and Industry
    • /
    • v.54 no.1
    • /
    • pp.11-28
    • /
    • 2021
  • Air pollution caused by particulate matters (PM) has become a global issue. PM is known to threaten human health by causing respiratory and cardiovascular disease. PM can be introduced to human gastrointestinal track through food intake, causing inflammation and changes in gut microbiota. Even at low PM concentrations, prolonged exposure to PM can cause significant accumulation of PM in food products. The adsorption of PM onto food surfaces is expected to be strongly influenced by the properties of food surfaces, but few studies have been reported. This paper examines several important food surface properties that may affect the interactions between PM and food surfaces, including surface wettability, surface charge, and surface microstructure. Understanding the adsorption of PM onto food surfaces can provide useful guidance for classifying PM-sensitive foods and controlling food chains, including cultivation, processing, preservation, and cooking, to ensure food safety against PM.