• Title/Summary/Keyword: PM Motor

Search Result 674, Processing Time 0.022 seconds

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength

  • Lee, Ji-Young;Hong, Do-Kwan;Woo, Byung-Chul;Kim, Kyu-Seob;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.125-129
    • /
    • 2013
  • This paper deals with a water-cooled direct drive permanent magnet (DD-PM) motor design for an injection-molding application. In order to meet the requirements for the target application and consider the practical problems of the manufacturing industry, the DD-PM motor is designed in consideration of efficiency and structural strength with many constraints. The performances of the designed motor are estimated not only by magnetic field analysis, but also by thermal and structural analysis. The design and analysis results are presented with experiment results.

Characteristics Analysis of PM Type Stepping Motor for Idle Air Valve (Idle Air Valve용 PM형 Stepping Motor의 특성해석)

  • Kim, G.T.;Lee, J.G.;Kim, D.H.;Shin, H.K.;Moon, J.S.;Kim, T.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.88-90
    • /
    • 1994
  • The permanent magnet type stepping motor is used widly for various devices, such as FA and OA machine. Characteristics of the stepping motor is analyzed using permeance method. Static, dynamic and I step response characteristics of PM type stepping motor for idle air valve is discussed.

  • PDF

Feasibility Study on the New Structure of a Spindle Motor for Hard Disk Drive

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This paper presents the new structure of a spindle motor for hard disk drive (HDD). It can produce axial force as well as torque without a pulling plate or a pulling magnet required for the normal operation of a hydrodynamic bearing in rotating-shaft structure. The proposed models have different air gap length along the axial direction by changing the thickness of permanent magnet (PM). One has a single slope and the other has double slopes on the surface of PM. For the design of the proposed models, variables are defined and its effects on the motor performances are investigated by 3-demensional finite element analysis (FEA). The equi-performance curves are investigated for the main characteristics of the spindle motor such as generated torque, axial force and torque ripple ratio. The validity of the proposed models is verified by the feasibility study and performance evaluation.

Development of hybrid type linear motor and its driving system (Hybrid type linear motor의 개발과 구동)

  • Kim Moon-Hwan;Kim Soon-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.278-281
    • /
    • 2006
  • A Hybrid type LPM(Linear Pulse Motor) is designed as single side stator structure. Experimental results are shown that the static and dynamic characteristics. By the computer simulation, the permanent magnet design method is also clarified to desired thrust force. And microstep driver is adopted to the position controller to the designed LPM. The driver suppressed position errors within ${\pm}1501{\mu}m$.

  • PDF

Analysis of Cogging Torque and Magnetic Force of a Brushless DC Motor due to Imperfect Magnetization of Permanent Magnet (영구자석 불균일 착자에 따른 브러시리스 DC 모터의 코깅토크와 불평형 자기력 분석)

  • Lee, Chung-Ill;Sung, Sang-Jin;Lee, Hyun-Min;Kang, Soo-Nam;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.847-852
    • /
    • 2007
  • This paper investigates the characteristics of cogging torque and magnetic force of a brushless DC (BLDC) motor due to imperfect magnetization of permanent magnet (PM) numerically and experimentally which results in the magnetically induced vibration. A predicted magnetization pattern of the PM of the BLDC motor, which is derived from the measured surface magnetic flux density along the PM, is applied to the finite element analysis in order to calculate the cogging torque and the unbalanced magnetic force. This research also develops the experimental setup to measure the unbalanced magnetic force as well as the cogging torque. It shows numerically and experimentally that the imperfect magnetization of permanent magnet generates the driving frequencies of cogging torque with integer multiple of slot number in addition to the least common multiple of pole and slot. It also shows that the driving frequencies of unbalanced magnetic force are integer multiple of slot number ${\pm}1$ due to imperfect magnetization of PM even in the rotationally symmetric design.

  • PDF

Low Cost Speed Control System of PM Brushless DC Motor Using 2 Hall-ICs (2Hall-ICs를 이용한 저가형 PM Brushless DC Motor 속도 제어)

  • 윤용호;우무선;김덕규;원충연;최유영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.311-318
    • /
    • 2004
  • Generally, PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder installed in case of the 3 phase motor. The Hall-ICs are set up in this motor to detect the main flux from the rotor. So the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. Instead of using three Hall-ICs and encoder, this paper uses only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and uses a micro controller of 16-bit type(80C196KC) with the 3 phase PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree phase difference. With these elements, we estimate information of the other phase in sequence through a rotating rotor.

Sensorless Control of PM Synchronous Motor Using Adaptive Observer (적응 관측기를 이용한 영구자석 동기전동기의 센서리스 제어)

  • 홍찬호;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.60-63
    • /
    • 1997
  • A new approach to the position sensor elimination of PM synchronous motor drives is presented in this study. Using the position sensing characteristics of PMSM itself, the actual rotor position as well as the machine speed can be estimated by adaptive flux observer and used as the feedback signal for the vector controlled PMSM drive. The adaptive speed estimation is achieved by model reference adaptive technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. In order to verify the effectiveness of the proposed scheme, computer simulations are carried out for the actual parameters of a PM synchronous motor and the results well demonstrate that the proposed scheme provides a good estimation value of the rotor speed without mechanical sensor. It is also shown that the actual rotor position as well as the machine speed can be achieved under the variation of the magnet flux linkage. Since the flux linkages are estimated by the adaptive flux observer and used for the identification of the rotor speed, robust estimation of the rotor speed can be performed.

  • PDF

Design Technique of a Permanent Magnet High-speed Motor for Improving Power Density and Efficiency (영구자석 고속전동기의 출력밀도 및 효율 향상을 위한 설계 기법)

  • Lee, Ki-Doek;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.425-430
    • /
    • 2014
  • This paper presents a design technique to improve the power density and efficiency of a permanent magnet high-speed motor by using the mono-PM rotor. The suggested model minimized rotor diameter and stack length which have a bad influence on shafting in the high-speed operation. Conventional and suggested motors are analyzed and compared by using FEM(Finite Element Method) to verify the effectiveness. The overall performance such as torque, losses, efficiency and power density and so on are investigated in detail. The results of the analysis deduced that the suggested mono-PM rotor design is superior to the conventional one.

A Braking Algorithm of a PM synchronous Motor (영구자석 동기전동기의 제동 알고리듬)

  • 조관열;양순배;홍찬희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.313-321
    • /
    • 2002
  • A braking algorithm for a PM synchronous motor is presented. The resistance of the stator windings operates as a braking resistors and dissipates the regenerated power from the rotor without any braking components including the electronic power components and control circuits. The proposed braking algorithm maximizes the power dissipation in the stator windings and also generates the maximum braking torque under the limit conditions of DC link capacitor voltage and inverter currents so that it can minimize the braking time.

A Study on the Position and Speed Control of PM Step Motor Using Micro-Step Control Drive (미세스텝 제어 방식에 의한 PM 스텝 모터의 위치 및 속도 제어에 관한 연구)

  • 김동현;한권상
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.871-878
    • /
    • 1990
  • The control method which electrically subdivides 1 step(1.8\ulcornerstep) of a PM step motor into 64 micro-step (0.028\ulcornerstep) is realized using micro-step algorithm on the basis of the look up table method and the position and velocity control using Z-80 microprocessor is also realized. With micro-stepping. The resolution of the system is improved, also by micro-step control of driving-current of the step motro, which is followed by the increase of micro-step subdivision-coefficient, the precise position and velocity control of step-motor can be realized and the stabilization of the system is improved.

  • PDF