• 제목/요약/키워드: PM Motor

검색결과 674건 처리시간 0.028초

Improved Dual Closed-loops PWM Control of PM DC Servomotor - a Case Study of Undergraduate Education for Electrical Engineering

  • Cao, Hongtai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.374-378
    • /
    • 2014
  • PID control method usually has problems of overshoot and oscillation in high order control system, therefore, it is important to improve the control method so as to reduce the overshoot and oscillation. Based on MATLAB simulation, a permanent magnet (PM) DC servomotor control system is studied in this paper. The motor is modeled according to the universal motor theory, and with the help of the fourth order Ronge-Kutta method, its speed control is simulated and compared between two different dual closed-loops PWM control methods. This case study helps undergraduate students to better understand theories related to electrical engineering, such as electrical machinery, power electronics and control theory, as well as digital solution of state equations.

가속 토오크 궤환을 이용한 영구자석 동기전동기의 강인제어 (A Robust Control of PM Synchronous Motor Using Accelerating Torque Feedback)

  • 정세교;김창균;박희정;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.571-573
    • /
    • 1996
  • A robust control technique of the PM synchronous motor is presented using an accelerating torque feedback. The accelerating torque is estimated by using an adaptive torque observer and then this estimated torque is controlled by a VSC technique. By employing the proposed torque control, the speed control performance of the motor is improved and the load independency can be realized. The simulations carried out for the PM synchronous motor to verily the effectiveness of the proposed control.

  • PDF

A Nonlinear Speed Control for a PM Synchronous Motor Using a Simple Disturbance Estimation Technique

  • Lee Na-Young;Kim Kyeong-Hwa;Youn Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.326-330
    • /
    • 2001
  • A nonlinear speed control for a permanent magnet (PM) synchronous motor using a simple disturbance estimation technique is presented. By using a feedback linearization, scheme, the nonlinear motor model can be linearized. To compensate an undesirable output performance under the mismatch of the system parameters and load conditions the controller parameters will be estimated by using a disturbance observer theory. Since only the two reduced-order observers are used for the parameter estimation, the observer designs are considerably simple and the computational load of the controller for parameter estimation is negligibly small. The proposed control scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative experiments.

  • PDF

A Study on the Torque Angle Compensator Design of an IPM Type PM Synchronous Motor

  • Byun, Young-Chul;Jeon, Hyuck-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.139.1-139
    • /
    • 2001
  • Nowadays due to the remarkable advance of power electronics and micro controller, a Brushless AC servomotor which has the characteristics of the high inertia to torque ratio, the high power density, the maintenance free, and so on is being used widely in industrial robots, machine tools, and factory automation. In a conventional DC motor, the polarity commutation is performed of itself by mechanical brush and commutator, but the PM synchronous motor requires an electrical commutation according to the rotor position. Then for the maximum torque production PM synchronous motor has to be equipped with a controller which maintains the optimal phase angle between the stator field and the magnetic field ...

  • PDF

Optimal Design of Multi-DOF Deflection Type PM Motor by Response Surface Methodology

  • Li, Zheng;Zhang, Lu;Lun, Qingqing;Jin, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.965-970
    • /
    • 2015
  • This paper uses response surface methodology as the optimization method of torque of multi-DOF deflection type PM motor. Firstly, the application of Taguchi algorithm selects structural parameters affecting the motor torque largely which simplifies the optimization process greatly. Then, based on the central composite design (CCD), response surface equation numerical model is constructed by the finite element method. With the aid of experiment design and analysis software, the effects of the interaction among factors on the index are analyzed. The results show that the analytical method is efficient and reliable and the experimental results can be predicted by response surface functions.

Claw-pole PM형 스테핑 모터의 특성 해석 및 성능 평가 (Characteristics Analysis and Performance Test of the Claw-pole PM Stepping Motor)

  • 유용민;오상열;김직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.21-23
    • /
    • 2004
  • The claw-pole PM(Permanent Magnet) stepping motor has the advantage of the positioning machine because of a relatively little step angle, facility of control, and detent torque characteristics. Although the research about this motor has been progressed, it was difficult to analyze because of three-dimensional magnetic circuit. This paper performed analysis of the static and dynamic characteristics of the claw-pole PM stepping motor using 3D-FEM(Finite Element Method). We also manufactured the test products and practiced performance tests for verification of the analysis results.

  • PDF

건축 구조물의 진동 제어용 하이브리드형 대용량 리니어 모터 댐퍼의 개발 (Development of a Large Capacity Hybrid-Type Linear Motor Damper for the vibration Control of Building Structures)

  • 정상섭;장석명;이성호;윤인기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권11호
    • /
    • pp.601-611
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and sqring is one aproach to safeguarding the structure against excessive vibrations. In this paper, a large capacity hybrid-type linear motor damper(LMD) was designed and fabricated for the application to the vibration control of a large building structure model. It has been designed to be able to move the damper mass, 1,500 kg up to ${\pm}250mm$ strokes at the first mode natural frequency of the building structure model, ${\pm}0.51Hz$. Linear motor is consisted of the fixed coil and the movable NdFeB permanent magnets field part. The PM field part composed magnet modules and iron yoke, is the damper mass itself, 1500kg. LMD therefore has a simplified structure and requires a few elements in the driving system, being compared with a rotary motor damper and a hydraulic damper. However, the manufacture of large PM linear actuator is difficult because of the limit of PM size and the attraction and repulsion at the assembly of PM. Therefore, large damper system is manufactured and tested for dynamic characteristics and frequency response.

Numerical Investigation on Permanent-Magnet Eddy Current Loss and Harmonic Iron Loss for PM Skewed IPMSM

  • Lim, Jin-Woo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.417-422
    • /
    • 2011
  • This paper presents the characteristics of PM eddy current loss and harmonic iron loss for PM step-skewed Interior Permanent Magnet Synchronous Motor (IPMSM) with concentrated windings and multi-layered PM under the running condition of maximum torque per ampere (MTPA) and flux-weakening control. In particular, PM eddy current loss and harmonic iron loss in IPMSM have been numerically computed with three-dimensional Finite Element Analysis (3D FEA), whereby IPMSM with concentrated windings and multi-layered PM has been designed to identify the optimized skew angle contributing to the reduced PM eddy current loss and torque ripples, while maintaining the required average torque. Furthermore, numerical investigation on PM eddy current loss and iron loss at MTPA and flux-weakening control has been carried-out in terms of PM step-skew.

전기자동차 압축기용 표면부착형 영구자석 전동기의 극/슬롯수 조합에 따른 특성해석 및 설계 (Design and Analysis of Surface-Mounted PM Motor of Compressor for Electric Vehicles Applications according to Slot/Pole Combinations)

  • 최장영;박형일;장석명;이성호
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1846-1857
    • /
    • 2011
  • This paper deals with design and analysis of surface-mounted PM (SPM) motor for compressor of air-conditioning system for electric vehicle applications according to slot/pole combination. First, required torque-speed curve characteristics are determined from operating conditions of the compressor. Restricted conditions such as motor size limit and current density are also determined. And then, under same rated and restricted conditions, twelve models which have different slot/pole combinations each other are designed for various pole arc/pitch ratio using simple equations and 2-d finite element (FE) analyses. Designed models are analyzed and compared in terms of back-emf THD, cogging torque, torque ripple, power losses, efficiency, etc. On the basis of analysis results, it is found that the motor with a 6-pole PM rotor and a 27-slot stator has most outstanding performances in electromagnetic aspects. Finally, through the mechanical modal analysis and demagnetization analysis, it is concluded that the determined motor is most suitable for the compressor of air-conditioning system for electric vehicles.

FPGA Based Robust Open Transistor Fault Diagnosis and Fault Tolerant Sliding Mode Control of Five-Phase PM Motor Drives

  • Salehifar, Mehdi;Arashloo, Ramin Salehi;Eguilaz, Manuel Moreno;Sala, Vicent
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.131-145
    • /
    • 2015
  • The voltage-source inverters (VSI) supplying a motor drive are prone to open transistor faults. To address this issue in fault-tolerant drives applicable to electric vehicles, a new open transistor fault diagnosis (FD) method is presented in this paper. According to the proposed method, in order to define the FD index, the phase angle of the converter output current is estimated by a simple trigonometric function. The proposed FD method is adaptable, simple, capable of detecting multiple open switch faults and robust to load operational variations. Keeping the FD in mind as a mandatory part of the fault tolerant control algorithm, the FD block is applied to a five-phase converter supplying a multiphase fault-tolerant PM motor drive with non-sinusoidal unbalanced current waveforms. To investigate the performance of the FD technique, the fault-tolerant sliding mode control (SMC) of a five-phase brushless direct current (BLDC) motor is developed in this paper with the embedded FD block. Once the theory is explained, experimental waveforms are obtained from a five-phase BLDC motor to show the effectiveness of the proposed FD method. The FD algorithm is implemented on a field programmable gate array (FPGA).