• 제목/요약/키워드: PM Motor

검색결과 674건 처리시간 0.032초

Programmable Ministep Drive

  • Thedmolee, Sunhapitch;Pongswatd, Sawai;Kummool, Sart;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2274-2277
    • /
    • 2003
  • A cylindrical permanent magnet inside the four-phase permanent magnet (PM) stepping motor is employed as the rotor. The stator has four teeth around, which its coils are wound. The mode of excitation can be classified into 3 modes: single-phase excitation, two-phase excitation and ministep excitation. The ministep drive is a method to subdivide one step into several small steps by means of electronics. The paper presents the programmable ministep technique drive. This technique decodes the results obtained from the counter to locate the data in Read Only Memory (ROM). The Sinusoidal Pulse Width Modulation (SPWM) is transformed to binary file and saved to the ROM. The experiment is performed with the four-phase PM stepping motor and drives from a two-phase programmable sinusoidal ministep signal, instead of square wave. The results show that the performances of the proposed programmable ministep technique drive have high efficiency, smooth step motion, and high speed response. Moreover, the resolution of sinusoidal ministep signal can be controlled by the input frequency (f command).

  • PDF

Optimum Design of Transverse Flux Machine for High Contribution of Permanent Magnet to Torque Using Response Surface Methodology

  • Xie, Jia;Kang, Do-Hyun;Woo, Byung-Chul;Lee, Ji-Young;Sha, Zheng-Hui;Zhao, Sheng-Dun
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.745-752
    • /
    • 2012
  • Transverse flux machine (TFM) has been proved to be very suitable for high-torque, low-speed, and direct-drive situation in industry. But the complex structures and costly permanent magnets (PMs) are two key limitations of its wide range of applications. This paper proposes a new claw pole TFM (ACPTFM) which features an assembled claw pole stator and using the lamination steels material to overcome the complex structures. By combining response surface methodology (RSM) with design of experiment, an optimum design method is put forward to improve the PM's contribution to the torque in order to save the PM's amount. The optimum design results demonstrate the validity of the proposed optimum design method and the optimized model. Eventually, the finite-element analysis (FEA) calculation method, which is used in the optimization process, is verified by the experiments in a prototype.

하이브리드 로켓의 추력제어 성능 향상에 관한 연구 (Study of Thrust Control Performance Improvement for Hybrid Rocket Applications)

  • 최재성;강완규;허환일
    • 한국추진공학회지
    • /
    • 제15권1호
    • /
    • pp.55-62
    • /
    • 2011
  • 본 연구에서는 하이브리드 로켓의 추력 제어 연소실험을 통하여 추력 제어 성능 향상을 위한 연구를 진행하였다. 추력 제어 명령에 따라 니들밸브와 결합된 스텝모터의 구동을 제어함으로써 산화제 유량을 조절하는 시스템을 구축하였다. 하이브리드 로켓 연소실험에서 사용된 산화제로는 기체산소($GO_2$)를 사용하였으며 추진제는 PE(Polyethylene)와 PC(Polycarbonate)를 사용하였다. 추력 제어 연소실험 초기에 발생되었던 추력섭동(Thrust Oscillation) 현상의 개선과 낮은 응답속도의 향상을 위해 연소실험 과정에서 산화제 배관의 유속 변화를 측정하고 원인을 분석하였다. 이를 보완한 연소 실험을 통하여 추력명령의 ${\pm}1$ N 이내에서 추력이 안정적으로 제어되었다.

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 위치제어 시스템 (A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;최경호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권3호
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator fluff observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at $\pm$20 and $\pm$2000 rpm. The developed digitally high-performance motion control system+ are shown a good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

영구자석 동기 전동기의 고속운전 시 토크리플 저감 알고리즘 (Torque Ripple Reduction Algorithm of PM Synchronous Motor at High Speed Operation)

  • 김종현;조관열;김학원
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.429-436
    • /
    • 2015
  • Torque ripples generate mechanical vibration at low speed and acoustic noise at high speed. The back emf harmonics of a PM synchronous motor is one of the main sources of torque ripples. To reduce torque ripples resulting from back emf harmonics, dq-axis harmonic currents that reduce the torque ripples are generally compensated to the current controller. Harmonic current compensation is effective at low speed, but it is not applicable at high speed because of the limited bandwidth of the current controller. In this study, dq-axis harmonic voltage compensation that can reduce torque ripples at high speed is proposed. The dq-axis harmonic voltages are calculated from the motor speed and the dq-axis harmonic currents. The effectiveness of the proposed method in reducing torque ripple is verified by a simulation and experiments.

Torque Ripple Reduction of a PM Synchronous Motor for Electric Power Steering using a Low Resolution Position Sensor

  • Cho, Kwan-Yuhl;Lee, Yong-Kyun;Mok, Hyung-Soo;Kim, Hag-Wone;Jun, Byoung-Ho;Cho, Young-Hoon
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.709-716
    • /
    • 2010
  • MDPS (motor driven power steering) systems have been widely used in vehicles due to their improved fuel efficiency and steering performance when compared to conventional hydraulic steering. However, the reduction of torque ripples and material cost are important issues. A low resolution position sensor for MDPS is one of the candidates for reducing the material costs. However, it may increases the torque ripple due to the current harmonics caused by low resolution encoder signals. In this paper, the torque ripple caused by the quantized rotor position of the low resolution encoder is analyzed. To reduce the torque ripples caused by the quantization of the encoder signals, the rotor position and the speed are estimated by measuring the frequency of the encoder signals. In addition, the compensating q-axis current is added to the current command so that the 6th order torque harmonic is attenuated. The reduction of torque ripples by applying the estimated rotor position and the compensated q-axis current is verified through experimental results.

프라이자흐 모델링과 유한요소법을 이용한 라인 스타트 영구자석 전동기의 영구자석 자화 특성 분석 (PM Magnetization Characteristics Analysis of a Post-Assembly Line Start Permanent Magnet Motor using coupled Preisach Modeling and Finite Element Method)

  • 라영각;이중호
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.469-475
    • /
    • 2014
  • This paper deals with the characteristics evaluations of PM magnetization using stator coil in a Post-Assembly Line Start Permanent Magnet Motor (LSPMM) using a coupled Finite Element Method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of permanent magnets. The focus of this paper is the characteristics analysis relative to magnetizing direction and quantity of permanent magnets due to the eddy current occurring in the rotor bar during magnetization of Nd-Fe-B.

Linear Electric Motors in Machining Processes

  • Gieras, Jacek F.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.380-389
    • /
    • 2013
  • Application of linear electric motors to automation of manufacturing processes, gantry robots, machining processes, machining centers, additive manufacturing and laser scribing has been discussed. The paper focuses on replacement of ball lead screw mechanisms with linear electric motors, linear motor driven positioning stages, linear motor driven gantries, machining centers, machining of large objects and industrial lasers. The best linear electric motors for application to machining processes are permanent magnet (PM) linear synchronous motors (LSMs), especially those without PMs in the reaction tail, e.g., high thrust density linear (HDL) LSMs and PM flux switching (FS) LSMs.

Adaptive Current Control Scheme of PM Synchronous Motor with Estimation of Flux Linkage and Stator Resistance

  • Kim, Kyeoug-Hwa;Baik, In-Cheol;Chung, Se-Kyo;Youn, Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.17-20
    • /
    • 1996
  • An adaptive current control scheme of a permanent magnet (PM) synchronous motor with the simultaneous estimation of the magnitude of the flux linkage and stator resistance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive system (MRAS) technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. The predictive control scheme is employed for the current controller with the estimated parameters. The robustness of the proposed current control scheme is compared with the conventional one through the computer simulations.

  • PDF

3차원 유한요소법과 패턴 탐색 알고리즘을 이용한 영구자석형 클로우폴 스테핑 모터의 정토크 특성 최적설계 (Optimum Design for Static Torque Characteristics of Claw-Poles PM Stepping Motor Using Pattern Search Algorithm and 3-Dimension Finite Element Method)

  • 조수연;함상환;배재남;박현종;원성홍;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.670_671
    • /
    • 2009
  • This paper presents a optimum design process for static torque characteristics of the Claw-Poles PM Stepping Motor(CPSM). Since the shape of CPSM changes along with axial direction, CPSM should only be analyzed by 3D-FEM. But 3D-FEM needs too much computation time and computer resources. Therefore, it is essential to reduce the number of 3D-FEM analysis models. In this paper, two design factors which affect the static torque characteristics of CPSM were selected. Optimum design process was able to make progress by using Pattern Search Algorithm and 3D-FEM. Finally, optimized model was compared with a conventional model.

  • PDF