• Title/Summary/Keyword: PM Machines

Search Result 112, Processing Time 0.035 seconds

Operation Principle and Topology Structures of Axial Flux-Switching Hybrid Excitation Synchronous Machine

  • Liu, Xiping;Wang, Chen;Zheng, Aihua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The operation principle of an axial flux-switching hybrid excitation synchronous machine (AFHESM) is analyzed and its topology structures are proposed in this paper. After some comprehensive analysis of the operation principle to axial flux electrical machine, flux-switching electrical machine and hybrid excitation electrical machine, the operation principle of AFHESM is given. Combined with some typical topological structures of hybrid excitation electrical machine, some possible topological structures are proposed and some comprehensive comparisons are carried out. The analysis results show that the stator-separated AFHESM has some advantages such as less AM turns, less impact on the demagnetization of PM, less magnetic flux-leakage and higher efficiency compared to other topologies.

A Study on the Optimal Design of Linear Motor with Transverse Flux Configuration for Railway Traction System (철도 차량용 고출력 횡축형 전동기 최적설계에 관한 연구)

  • Kang, D.H.;Bang, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.427-429
    • /
    • 1999
  • According to the development of power electronic element(GTO. IGBT) and material for electrical machines(permanent magnet. super conductor), the technology for electrical machines is now a day rapidly developing. Here with, a novel electrical machine, based on the new conception of transverse flux configuration leads to a considerable increase in power density and enables simultaneously high efficiency. The transverse flux machine with PM excitation will be applied to gearless direct drives for railway traction system. The designed and measured performance of transverse machine for railway traction system revealed a great potential of system improvements to reduce linear motor mass.

  • PDF

Magnetic Characteristic Analysis of Permanent Magnet Motor with Complex E&S Modeling

  • Zeze, Shingo;Todaka, Takashi;Enokizono, Masato
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • This paper presents analyzed results of a permanent magnet motor by using complex E&S modeling. The calculated results are compared with ones from the conventional E&S modeling for verification. Combinations of the numbers of slots and poles are investigated to reduce total iron loss. The results demonstrate that the complex E&S modeling is very useful in design under consideration of rotational magnetic field and magnetic anisotropy.

Study on Reducing Cogging Torque of Interior PM Motor for Agricultural Electric Vehicle

  • Cho, Ju-Hee;Park, Yong-Un;Kim, Dae-Kyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.134-140
    • /
    • 2013
  • This paper proposes a new design of rotor shape of Interior Permanent Magnet Synchronous Motor (IPMSM) used for agricultural electric vehicle (AEV). The distribution of the residual magnetic flux density at the air gap is modified by rotor surface shape and V-type magnet angle. As a result, cogging torque and physical characteristic have been improved, and back electromotive force (back-EMF) of the suggested model has been improved to be closest to sine wave form compared to initial model. The validity of the proposed rotor shape optimization is confirmed by the manufactured IPM rotor core and measured the performance of the cogging torque.

Field Weakening Control of a PM Electric Variable Transmission for HEV

  • Cheng, Yuan;Bouscayrol, Alain;Trigui, Rochdi;Espanet, Christophe;Cui, Shumei
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1096-1106
    • /
    • 2013
  • This paper presents the control of a Permanent Magnet Electric Variable Transmission (PM-EVT) for Hybrid Electric Vehicles (HEVs). Consisting of two electric machines, the EVT realizes the power split function in an electromagnetic way rather than in a mechanical way. A specific PM-EVT has been designed for Toyota Prius II. The control scheme of the entire vehicle is deduced using the Energetic Macroscopic Representation methodology. The energy management strategy yields local control references. A specific attention is paid for the field weakening for wide speed range. Simulation results are provided to illustrate the EVT modeling and control.

High Speed Motor/Generator of an Electro-Mechanecal Battery for Power Averaging of Alternative energy system (대체에너지 시스템의 출력 평준화를 위한 EMB용 초고속 전동발전기)

  • Jang, S.M.;Yoon, I.K.;Ryu, D.W.;Choi, S.K.;Yoon, K.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.337-339
    • /
    • 2001
  • High speed brushless permanent magnet (PM) machines are a key technology for electric drives and motion control systems for many application, since they are conductive to high efficiency, high power density small size and low weight. Proposed slotless PM machine is constructed without stator winding slots. Its stator magnetic material is in the form of a ring and winding have a toroidal configuration and its rotor consists of a 4-pole Halbach array or radially magnetized PM rotor.

  • PDF

MODELING OF IRON LOSSES IN PERMANENT MAGNET SYNCHRONOUS MOTORS WITH FIELD-WEAKENING CAPABILITY FOR ELECTRIC VEHICLES

  • Chin, Y.K.;Soulard, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • Recent advancements of permanent magnet (PM) materials and solid-state devices have contributed to a substantial performance improvement of permanent magnet machines. Owing to the rare-earth PMs, these motors have higher efficiency, power factor, output power per mass and volume, and better dynamic performance than induction motors without sacrificing reliability. Not surprisingly, they are continuously receiving serious considerations for a variety of automotive and propulsion applications. An electric vehicle (EV) requires a high-effficient propulsion system having a wide operating range and a capability of generating a high peak torque for short durations. The improvement of torque-speed performance for these systems is consequently very important, and researches in various aspects are therefore being actively pursued. A great emphasis has been placed on the efficiency and optimal utilization of PM machines. This requires attention to many aspects related to the machine design and overall performance. In this respect, the prediction of iron losses is particularly indispensable and challenging, especially for drives with a deep field-weakening range. The objective of this paper is to present iron loss estimations of a PM motor over a wide speed range. As aforementioned, in EV applications core losses can be significant during high-speed operation and it is imperative to evaluate these losses accurately and take them into consideration during the motor design stage. In this investigation, the losses are predicted by using an analytical model and a 2D time-stepped finite element method (FEM). The results from different analytical approaches are compared with the FEM computations. The validity of each model is then evaluated by these comparisons.

Comparison and Analysis of Photon Beam Data for Hospitals in Korea and Data for Quality Assurance of Treatment Planning System (국내 의료기관들의 광자 빔 데이터의 비교 분석 및 치료계획 시스템 정도관리자료)

  • Lee, Re-Na;Cho, Byung-Chul;Kang, Sei-Kwon
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2006
  • Purpose: Photon beam data of linear accelerators in Korea are collected, analyzed, and a simple method for checking and verifying the dose calculations in a TPS are suggested. Materials and Methods: Photon beam data such as output calibration condition, output factor, wedge factor, percent depth dose, beam profile, and beam quality were collected from 26 institutions in Korea. In order to verify the accuracy of dose calculation, ten sample planning tests were peformed. These Include square, elongated, and blocked fields, wedge fields, off-axis dose calculation, SSD variation. The planned data were compared to that of manual calculations. Results: The average and standard deviation of photon beam quality for 6, 10, and 15 MV were $0.576{\pm}0.005,\;0.632{\pm}0.004,\;and\;0.647{\pm}0.006$, respectively. The output factors of 6 MV photon beam measured at depth of dose maximum for $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm\;were\;0.944{\pm}0.006,\;1.031{\pm}0.006,\;and\;1.055{\pm}0.007$. For 10 MV photon beam, the values were $0.935{\pm}0.006,\;1.031{\pm}0.007,\;1.054{\pm}0.0005$. The collected data were not enough to calculate average, the output factors for 15MV photon beam with field size of $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm\;were\;0.941{\pm}0.008,\;1.032{\pm}0.004,\;1.049{\pm}0.014$. There was seven institutions $e{\times}ceeding$ tolerance when monitor unit values calculated from treatment planning system and manually were compared. The measured average MU values for the machines calibrated at SAD setup were 3 MU and 5 MU higher than the machines calibrated at SSD for 6 MV and 10 MV, respectively except the wedge case. When the wedges were inserted, the MU values to deliver 100 cGy to 5 cm depends on manufactures. When the same wedge angle was used, Siemens machine requires more MUs then Varian machine. Conclusion: In this study, photon beam data are collected and analyzed to provide a baseline value for chocking beam data and the accuracy of dose calculation for a treatment planning system.

  • PDF

A Novel Concept of Phase Swapping for Multiple Enhanced Speed Operations of a PM machine using Winding Switching

  • Atiq, Shahid;Hussain, Asif;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.262-271
    • /
    • 2017
  • This paper presents a novel concept of phase swapping to associate multiple flux weakening ranges to a non-salient PM machine without altering any hardware of the machine. The proposed concept enables a dual three-phase machine to be operated with different displacement angles between the two three-phase windings. Hence, different flux weakening ranges using winding switching can be accomplished by applying this concept. It was also demonstrated that the proposed concept can be utilized for the discrete step as well as continuous operation of the machines. Any application requiring a wide speed range operation of up to thirteen times the base speed can benefit from this proposed concept. Analytical, simulation, and experimental results are provided to validate the effectiveness of the proposed concept.

Servo Drives State of the Art in Industrial Applications - A Survey

  • Kennel R.;Kobs G.;Weber R.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.321-325
    • /
    • 2001
  • Servo drives with microcomputer control provide the possibility of using modem and sophisticated control algorithms. As an additional feature it is possible to implement parallel and/or redundant software and hardware structures to realise safe motion or similar security functions. Unfortunately microcomputer control also has some impact on the behaviour of servo drives. Control algorithm, cycle time, sensors and interface have to be perfectly synchronised. Special control schemes are necessary on the line side (power supply) to meet the actual requirements concerning EMC. This contribution presents experiences and results obtained from a modem digital drive system pointing out the influences of low and high accuracy position sensors and the interdependencies mentioned above.

  • PDF