• Title/Summary/Keyword: PM BLDC Motor

Search Result 52, Processing Time 0.031 seconds

Characteristics Analysis for Reduction of Cogging Torque in a Novel Axial Flux Permanent Magnet BLDC Motor (평판형 영구 자석 BLDC 전동기의 코깅 토크 저감은 위한 특성 해석)

  • Jo, Won-Young;Lee, In-Jae;Kim, Byung-Kuk;Kim, Tae-Hyun;Hwang, Dong-Won;Cho, Yun-Hyun;Koo, Dae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1180-1182
    • /
    • 2005
  • In this paper, the design and field analysis of the novel axial flux type permanent magnet(AFPM) motor with double stator and single rotor are investigated. The various design schemes of AFPM based on 3D finite element method are proposed. The effects of slot shapes, various magnetization of PM, and skewing on the cogging torque and average torque have been investigated in detail. From the results, we can improve the cogging torque and average torque characteristics.

  • PDF

Sensorless Control of BLDC Motor Drive using 4-Switch Inverter (4-Switch Inverter를 이용한 BLDC 전동기 센서리스 제어)

  • Yoon Yong-Ho;Kim Yuen-Chung;Lee Tae-Won;Lee Byoung-Kuk;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.116-118
    • /
    • 2006
  • 일반적으로 3상 BLBC 전동기 구동을 하기 위해서는 6-스위치 인버터와 회전속도를 제어하기 위해서는 회전속도와 회전자 위치에 대한 정보를 필요로 한다. 본 논문에서는 3상 BLDC 전동기 구동을 위한 방법으로서 4-스위치 인버터와 회전자 위치를 간접적으로 검출하는 센서리스 구동방식을 제안하였다. PM BLBC 전동기의 고정자전압 특성중 하나인 3고조파 전압 성분을 이용하여 기존의 위치 검출 센서인 Hall-ICs의 신호를 생성하여 회전자의 위치를 판별함과 동시에 속도 센서를 대신하여 사용할 수 있는 방법을 제안하였다.

  • PDF

Dynamic Analysis Algorithm of Irreversible Demagnetization of IPM-type Brushless DC Motor by Stator Turn Fault (고정자 절연파괴 고장에 의한 매입형 영구자석 BLDC 모터의 불가역 감자에 대한 동적해석 알고리즘)

  • Lee, Yoon-Seok;Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1661-1667
    • /
    • 2013
  • This paper studies the dynamic irreversible demagnetization characteristics of an interior permanent magnet (PM) brushless DC motor with a stator turn fault. A new algorithm, which is a finite element method (FEM) combined with a line voltage equation of the motor, is developed to analyze irreversible demagnetization under dynamic and transient states and considers a stator turn fault. The input current, circulating current, magnetic distribution characteristics, and operating property of the PM, including the irreversible demagnetization in the fault state, are analyzed using this algorithm by considering the magnetic saturation effect. The feasibility of the proposed method confirmed from the analysis results is verified via an experiment. Through this fault analysis, we can accurately check the fault phenomena of a PM motor against the demagnetization fault for fault prevention.

Drive Controller System in PM Motor with Independently Excited Winding for an Electric Bicycle (전기자전거용 독립여자권선 영구자석 전동기의 구동제어기 설계)

  • Choi, Jin-Wook;Son, Young-Dae;Kang, Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.175-177
    • /
    • 2007
  • This paper presents for the torque characteristics and improving the efficiency of driving system of electric bicycle which applied IEWPM(Independently Excited Winding Permanent Magnet) motor. IEWPM motor can expand the number of phase from 3 phases to multiphase like SRM motor because stator windings are unconnected directly. BLDC motor raise rotor'-s electromagnetic torque per unit volume by using Spoke type permanent magnet. By using two photo sensor per phase and applying excited width, advance angle and bipolar control, we confirmed higher torque at a low speed, higher out-put at a high speed, and efficiency improvement at a wide speed control area.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계및 해석)

  • 최상규;김영철;경진호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1998
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness if 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favirable for smooth operation of the system around the 2nd critical speed.

  • PDF

Electromagnetic Characteristics Analysis of High-speed Brushless DC Motor (고속 BLDC 전동기의 전자기 특성 해석)

  • Park, Hyung-Il;Jang, Seok-Myeong;Choi, Jang-Young
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.916-917
    • /
    • 2015
  • This paper deals with electromagneitc characteristics analysis of high-speed brushless DC motor. First, under same rated and restricted conditions, four models which have different slot combinations each other are designed using 2-d finite element (FE) analyses. Designed models are analyzed and compared in terms of core loss, copper loss, eddy-current loss, etc. On the basis of analysis results, it is found that the motor with a 2-pole PM rotor and a 6-slot stator has most outstanding performances in electromagnetic aspects.

  • PDF

Reduction of Electromagnetic Torque Ripple in High-Speed, High-Load Brushless DC Motors used for Automobile Parts (자동차 부품용 고속, 고부하 BLDC 모터내의 전자기적 토크 맥동 저감)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • For permanent magnet brushless DC motors used for high speed fuel pumps, torque ripple is an important origin of vibration, acoustic noise and speed fluctuation. In this paper, the output torque profile of a PM motor with one phase energized is decomposed into the commutation torque, the reluctance torque and the armature reaction torque according to their source origins. It verifies that the output torque profile is qualitatively equivalent to the BEMF profile for low reluctance motors. This paper discusses the effect of magnet pole shaping and magnet arc length on the output torque and torque ripple. A magnet edge shaping is proposed to design a trapezoidal BEMF motor without torque ripple, with minimal sacrifice of the maximum output torque.

  • PDF

A Study on the Development of High-Speed Control Algorithm for the trapezoidal Brushless DC Motor (구형파 브러시리스 직류 전동기의 고속 운전 제어 알고리즘 개발에 관한 연구)

  • Choi Jae-Hyuk;Jang Hoon;Kim Jong-Sun;Yoo Ji-Yoon;Song Myung-Hyun;Lee Young-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.435-438
    • /
    • 2002
  • The Objects of this paper are developing and also improving a high-speed driving system of bushless DC motor(BLDCM) with economical and practical performance. Because BLDC motors are manufactured that each motor can create proper torque for their individual purpose, it is difficult to increase over the rated speed when a motor speed (with it's rated road) is reaching to a maximum speed so the motor torque cannot be increased. This paper verifies the effects of Leading Angle Algorithm, that is proposed on this paper, with examining existing methods to maximize the torque of a motor in high-speed driving area. The arithmetic processor for this experiment is TMS320C240 DSP controller that is designed for a special purpose of motor control in Texis Instrument Inc., and the used Inverter is PM10CSJ060, a Intelligent Power Module of Mitsubishi Corporation.

  • PDF

Analysis of a Magnetic Field According to Eccentricity in Brushless DC M01 (BLDC 모터에서의 편심에 따른 자계특성 해석)

  • Jang, S.M.;Yoon, I.K.;Lee, S.H.;Choi, S.K.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.706-708
    • /
    • 2002
  • Vibration, giving rise to acoustical noise, is an important index of motor performance. The unbalance force due to rotor eccentricity caused by manufacturing imprecision or bearing defects is one possible source of excitation to vibration. With the advent of new high-energy magnetic material together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper introduces two types of high-speed slotless permanent magnet (PM) machine for electro-mechanical battery and investigates unbalance force due to static eccentricity with finite element method.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;경진호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.283-289
    • /
    • 1997
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analyses and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness of 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favorable for smooth operation of the system around the 2nd critical speed.

  • PDF