• Title/Summary/Keyword: PM(Particulate matter)

Search Result 824, Processing Time 0.038 seconds

Impact of Dust Transported from China on Air Quality in Korea -Characteristics of PM2.5 Concentrations and Metallic Elements in Asan and Seoul, Korea

  • Yang, Won-Ho;Son, Bu-Soon;Breysse, Patrick;Chung, Tae-Woong
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • [ $PM_{2.5}$ ], particulate matter less than 2.5 um in a diameter, can penetrate deeply into the lungs. Exposure to $PM_{2.5}$ has been associated with increased hospital visits for respiratory aliments as well as increase mortality. $PM_{2.5}$ is a byproduct of combustion processes and as such has a complex composition including a variety of metallic elements, inorganic and organic compounds as well as biogenic materials (microorganisms, proteins, etc). In this study, the average concentrations of fine particulates $PM_{2.5}$ have been measured simultaneously in Asan and Seoul, Korea, by using particulate matter portable sampler from September 2001 to August 2002. Sample collection filters were analyzed by ICP-OES to determine the concentrations of metallic elements (As, Ni, Fe, Cr, Cd, Cu, Pb, Zn, Si). Annual mean $PM_{2.5}$ concentrations in Asan and Seoul were 37.70 and $45.83\;{\mu}g/m^3$, respectively. The highest concentrations of $PM_{2.5}$ were found in spring season in both cities and the concentrations of measured metallic elements except As in Asan were higher than those in Seoul, suggesting that yellow dust in spring could affect $PM_{2.5}$ concentrations in Asan rather than Seoul. The correlation coefficients of Pb and Zn were 0.343 for Asan and 0.813 for Seoul during non-yellow dust condition, suggesting that Pb and Zn were influenced with the same sources. The correlation coefficients between Si and Fe in the fine particulate mode were 0.999 (Asan) and 0.998 (Seoul) during yellow dust condition. It was suggested that these two elements were impacted by soil-related transport from China during the yellow dust storm condition.

Thermal and Hygroscopic Properties of Indoor Particulate Matter Collected on an Underground Subway Platform

  • Ma, Chang-Jin;Lee, Kyoung-Bin;Zhang, Daizhou;Yamamoto, Mariko;Kim, Shin-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.228-235
    • /
    • 2015
  • In order to clarify the thermal and hygroscopic properties of indoor particulate matter (PM) in a semiclosed subway space, which is critically important for understanding of the distinctive particle formation processes as well as the assessment of their health effects, the size-resolved PMs (i.e., $PM_{2.5}$ and $PM_{10-2.5}$) were intensively collected on the platform of Miasageori station on the Seoul Subway Line-4. The elemental concentrations in soluble and insoluble fractions were determined by PIXE from the bulkily pretreated $PM_{2.5}$. The thermal and hygroscopic characteristics of individual particles were investigated via a combination of the unique pretreatment techniques (i.e., the high-temperature rapid thermal process and the water dialysis) and SEM-EDX analysis. Iron and calcium were unequaled in insoluble and soluble $PM_{2.5}$ fractions, respectively, with overwhelming concentration. The SEM-EDX's elemental net-counts for the pre- and post-pyrolyzed PMs newly suggest that magnesium and several elements (i.e., silica, aluminum, and calcium) may be readily involved in the newly generated subway fine PM by a high-temperature thermal processing when trains are breaking and starting. Through the water dialysis technique, it turned out that calcium has meaningful amount of water soluble fraction. Furthermore, the concentrations of the counter-ions associated with the calcium in subway $PM_{10-2.5}$ were theoretically estimated.

Distribution of Airborne Fungi, Particulate Matter and Carbon Dioxide in Seoul Metropolitan Subway Stations (서울시 일부 지하철역 내 부유 진균, 입자상 물질, 이산화탄소의 분포 양상)

  • Kim, Ki-Youn;Park, Jae-Beom;Kim, Chi-Nyon;Lee, Kyung-Jong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.4
    • /
    • pp.325-330
    • /
    • 2006
  • Objectives: The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. Methods: The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. Results: In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, $PM_{10}\;and\;PM_{2.5}$, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean $PM_{10}\;and\;PM_{2.5}$ concentration in the platform located at underground was significantly higher than that of the ground (p<0.05). Conclusions: The levels of airborne fungi in the Seoul subway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

Anti-inflammatory Effects of Myrrh Ethanol Extract on Particulate Matter-induced Skin Injury (미세먼지로 인한 피부 각질 세포 손상에서 몰약 에탄올 추출물의 항염증 효과)

  • Young Hee Jung;Yeun Wha Roh;Myongsoo Chong
    • The Journal of Korean Medicine
    • /
    • v.43 no.3
    • /
    • pp.1-15
    • /
    • 2022
  • Objectives: Myrrh have been used as a traditional remedy to treat infectious and inflammatory diseases. However, it is largely unknown whether myrrh ethanol extract could exhibit the inhibitory activities against particulate matter (PM)-induced skin injury on human keratinocytes, HaCaT cells. Therefore, this study was aimed to investigate the inhibitory activity of myrrh ethanol extract on PM-induced skin injury in HaCaT cells. Methods: To investigate the inhibitory effects of myrrh ethanol extract in HaCaT cells, the skin injury model of HaCaT cells was established under PM treatment. HaCaT keratinocyte cells were pre-treated with myrrh ethanol extract for 1 h, and then stimulated with PM. Then, the cells were harvested to measure the cell viability, reactive oxygen species (ROS), pro-inflammatory cytokines including interleukin (IL) 1-beta, IL-6, and tumor necrosis factor (TNF)-𝛼, hyaluronidase, collagen, MMPs. In addition, we examined the mitogen activated protein kinases (MAPKs) and inhibitory kappa B alpha (I𝜅-B𝛼) as inhibitory mechanisms of myrrh ethanol extract. Results: The treatment of myrrh ethanol extract inhibited the PM-induced cell death and ROS production in HaCaT cells. In addition, myrrh ethanol extract treatment inhibited the PM-induced elevation of IL-1beta, IL-6, and TNF-𝛼. Also, myrrh ethanol extract treatment inhibited the increase of hyaluronidase, MMP and decrease of collagen. Furthermore, myrrh ethanol extract treatment inhibited the activation of MAPKs and the degradation of I𝜅-B𝛼. Conclusions: Our result suggest that treatment of myrrh ethanol extract could inhibit the PM-induced skin injury via deactivation of MAPKs and nuclear factor (NF)-𝜅B in HaCaT cells. This study could suggest that myrrh ethanol extract could be a beneficial agent to prevent skin damage or inflammation.

Reduction Effect of Air Cleaner on Particulate Matters and Biological Agents in a Swine Facility (공기정화기 적용에 따른 돈사 작업장내 입자상 물질 및 생물학상 물질 저감 효과에 관한 연구)

  • Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • Objectives: This on-site study was performed to evaluate the reduction efficiency of an air cleaner on particulate matters and biological agents in a swine facility. Materials and Methods: Particulate matter was measured using a real-time monitoring recorder and biological agents were sampled with a one-stage impactor and then analyzed based on the microbial culture method. An experimental process for the reduction effect on airborne pollutants through air cleaner operation consisted of three conditions: no treatment, wet scrapper by water spray and wet scrapper by disinfectant spray. Results: Geometric mean levels of particulate matter(TSP, $PM_{10}$, $PM_{2.5}$ and $PM_1$) were presented at $1,608{\mu}g/m^3$, $1,373.8{\mu}g/m^3$, $401.8{\mu}g/m^3$ and $144.5{\mu}g/m^3$ for no treatment; $1,503{\mu}g/m^3$, $1,017{\mu}g/m^3$, $159.4{\mu}g/m^3$ and $69.8{\mu}g/m^3$ for wet scrapper by water spray; and $1,222.17{\mu}g/m^3$, $477.17{\mu}g/m^3$, $33.2{\mu}g/m^3$ and $11.1{\mu}g/m^3$ for wet scrapper by disinfectant spray, respectively. In the case of biological agents, the geometric averaged concentrations of total airborne bacteria and fungi were as follows: $45,371cfu/m^3$ and $13,474cfu/m^3$ for no treatment, $43,286cfu/m^3$ and $8,610cfu/m^3$ for wet scrapper by water spray, and $2,440cfu/m^3$ and 1,867 cfu/ for wet scrapper by disinfectant spray, respectively. Regardless of particulate matter and biological agent, the highest concentrations were found for no treatment, while the lowest concentrations were found with wet scrapper by disinfectant spray. Conclusions: Based on the results obtained from this on-site evaluation, there was a significant reduction effect on particulate matter and biological agents through the application of an air cleaner in this study.

Study on the On-Board Test of After-Treatment Systems to Reduce PM-NOx in Low-Speed Marine Diesel Engine (선박용 저속디젤엔진 적용을 위한 PM-NOx 동시저감 배출저감설비 해상실증 연구)

  • Dong-Kyun Ko;Suk-Young Jeong;In-Seob Kim;Gye-Won An;Youn-Woo Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.497-504
    • /
    • 2023
  • In this study, Selective catalytic reduction (SCR) + Diesel particulate filter (DPF) system was installed on a ship with a low-speed engine to conduct the on-board test. The target ship (2,881 gross tons, rated power 1,470 kW@240 rpm ×1) is a general cargo ship sailing in the coastal area. Drawing development, approvals and temporary survey of the ship were performed for the installation of the after-treatment system. For performance evaluation, the gaseous emission analyzer was used according to the NOx technical code and ISO-8178 method of measurement. The particulate matter analyzer used a smoke meter to measure black carbon, as discussed by the International Maritime Organization (IMO). Tests were conducted using MGO (0.043%) and LSFO (0.42%) fuels according to the sulfur content. The test conditions were selected by considering the engine rpm (130, 160 and 180). Gaseous emission and particulate matter (smoke) were measured according to the test conditions to confirm the reduction efficiency of the after treatment system. The results of NOx emission and particulate matter (smoke) revealed that reduction efficiency was more than 90%. The exhaust pressure met the allowable back pressure (less than 50 mbar). This study confirms the importance of the on-board test and the potential of SCR + DPF systems as a response technology for reducing nitrogen oxides and particulate matter.

A Study on the Influence on Medical Care for the Elderly by Exposure to Fine Particulate Matter and Ozone (미세먼지와 오존노출에 의한 노인의 의료 이용 영향에 대한 연구)

  • Jung, En-Joo;Na, Wonwoong;Lee, Kyung-Eun;Jang, Jae-Yeon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.30-41
    • /
    • 2019
  • Objectives: The effects of particulate matter and ozone on health are being reported in a number of studies. These effects are likely to be stronger on the elderly population, but studies in this regard are scarce. The purpose of this study was to examine the effects of particulate matter ${\leq}2.5{\mu}m$ and ozone on the acute health status of the elderly population. Methods: In order to analyze the health status of the elderly population, the NHIS-Senior Cohort data was used. In this study of people 60 years or older in Seoul, the number of outpatient visits and ER visits between 2002 and 2013 were calculated. Each disorder and the lag effect were analyzed separately. Particulate matter and ozone were analyzed using both the single exposure model and the adjusted multi-exposure model. Results: In the single exposure analysis with PM2.5 as the exposure variable, with each increase of $10{\mu}g/m^3$, the number of outpatient visits increased by 1.0081 times, vascular disease 1.0065 times, chronic pulmonary disease 1.0086 times, and diabetes 1.0055 times. In the multi-exposure model adjusting for ozone, the number of outpatient visits increased by 1.0066 times. There was a one-day lag effect and 1.0066 times increase between PM2.5 and ER visits in the multi-exposure model and 1.0057 times when adjusted for ozone (p value <0.10). There was a one-day lag effect in all multi-exposure models with ozone as the main variable, and when the particulate matter was adjusted, there was a one-day delay and 1.0143 times increase in ER visits. Conclusions: In our study, an increase in the number of outpatient and ER visits in the elderly population in accordance with the increase in PM2.5 and ozone was found. The association found in our study could also produce a socioeconomic burden. Future studies need to be performed in regards to younger populations and other air pollutants.

An Investigation on the Perception of the Effects of Particulate Matter on Oral Health (미세먼지가 구강건강에 미치는 영향에 관한 인식도 조사)

  • Kim, Jue-young;Son, Hwa-kyung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.620-628
    • /
    • 2021
  • This study was conducted to investigate public's perception of the effects of particulate matter (PM) in oral health and to provide specific motivation to prevent oral disease by PM. A total of 134 adults were selected as final analysis subjects from some people all over the country. The data collected is analyzed using SPSS 21.0 for windows. Frequency analysis was used to identify general characteristics and hygiene habit. For identifying perception of effects of PM on oral health, crossover analysis was used. The largest number of people recognized that the level of PM had deteriorated, compared to five years ago. That perception was highest among those in 30 years of age and service professions. Those who check the concentration of PM are more concerned with oral health care when the PM is occurred in high concentration. People who perceive PM as a threat to the oral health are more concerned about oral health care when the PM is occurred in high concentration. It is concerned those who are aware of the relationship between PM and oral health specifically manage the oral health to protect the oral cavity from PM.