• Title/Summary/Keyword: PLS-Regression model

Search Result 75, Processing Time 0.021 seconds

Evaluation of benzene residue in edible oils using Fourier transform infrared (FTIR) spectroscopy

  • Joshi, Ritu;Cho, Byoung-Kwan;Lohumi, Santosh;Joshi, Rahul;Lee, Jayoung;Lee, Hoonsoo;Mo, Changyeun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.257-271
    • /
    • 2019
  • The use of food grade hexane (FGH) for edible oil extraction is responsible for the presence of benzene in the crude oil. Benzene is a Group 1 carcinogen and could pose a serious threat to the health of consumer. However, its detection still depends on classical methods using chromatography which requires a rapid non-destructive detection method. Hence, the aim of this study was to investigate the feasibility of using Fourier transform infrared (FTIR) spectroscopy combined with multivariate analysis to detect and quantify the benzene residue in edible oil (sesame and cottonseed oil). Oil samples were adulterated with varying quantities of benzene, and their FTIR spectra were acquired with an attenuated total reflectance (ATR) method. Optimal variables for a partial least-squares regression (PLSR) model were selected using the variable importance in projection (VIP) and the selectivity ratio (SR) methods. The developed PLS models with whole variables and the VIP- and SR-selected variables were validated against an independent data set which resulted in $R^2$ values of 0.95, 0.96, and 0.95 and standard error of prediction (SEP) values of 38.5, 33.7, and 41.7 mg/L, respectively. The proposed technique of FTIR combined with multivariate analysis and variable selection methods can detect benzene residuals in edible oils with the advantages of being fast and simple and thus, can replace the conventional methods used for the same purpose.

Feasibility Study for an Optical Sensing System for Hardy Kiwi (Actinidia arguta) Sugar Content Estimation

  • Lee, Sangyoon;Sarkar, Shagor;Park, Youngki;Yang, Jaekyeong;Kweon, Giyoung
    • Journal of agriculture & life science
    • /
    • v.53 no.3
    • /
    • pp.147-157
    • /
    • 2019
  • In this study, we tried to find out the most appropriate pre-processing method and to verify the feasibility of developing a low-price sensing system for predicting the hardy kiwis sugar content based on VNIRS and subsequent spectral analysis. A total of 495 hardy kiwi samples were collected from three farms in Muju, Jeollabukdo, South Korea. The samples were scanned with a spectrophotometer in the range of 730-2300 nm with 1 nm spectral sampling interval. The measured data were arbitrarily separated into calibration and validation data for sugar content prediction. Partial least squares (PLS) regression was performed using various combinations of pre-processing methods. When the latent variable (LV) was 8 with the pre-processing combination of standard normal variate (SNV) and orthogonal signal correction (OSC), the highest R2 values of calibration and validation were 0.78 and 0.84, respectively. The possibility of predicting the sugar content of hardy kiwi was also examined at spectral sampling intervals of 6 and 10 nm in the narrower spectral range from 730 nm to 1200 nm for a low-price optical sensing system. The prediction performance had promising results with R2 values of 0.84 and 0.80 for 6 and 10 nm, respectively. Future studies will aim to develop a low-price optical sensing system with a combination of optical components such as photodiodes, light-emitting diodes (LEDs) and/or lamps, and to locate a more reliable prediction model by including meteorological data, soil data, and different varieties of hardy kiwi plants.

Mid-infrared (MIR) spectroscopy for the detection of cow's milk in buffalo milk

  • Anna Antonella, Spina;Carlotta, Ceniti;Cristian, Piras;Bruno, Tilocca;Domenico, Britti;Valeria Maria, Morittu
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.531-538
    • /
    • 2022
  • In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The fraudulent adulteration of buffalo milk with cheaper and more available milk of other species is very frequent. In the present study, Fourier transform infrared spectroscopy (FTIR), in combination with multivariate analysis by partial least square (PLS) regression, was applied to quantitatively detect the adulteration of buffalo milk with cow milk by using a fully automatic equipment dedicated to the routine analysis of the milk composition. To enhance the heterogeneity, cow and buffalo bulk milk was collected for a period of over three years from different dairy farms. A total of 119 samples were used for the analysis to generate 17 different concentrations of buffalo-cow milk mixtures. This procedure was used to enhance variability and to properly randomize the trials. The obtained calibration model showed an R2 ≥ 0.99 (R2 cal. = 0.99861; root mean square error of cross-validation [RMSEC] = 2.04; R2 val. = 0.99803; root mean square error of prediction [RMSEP] = 2.84; root mean square error of cross-validation [RMSECV] = 2.44) suggesting that this method could be successfully applied in the routine analysis of buffalo milk composition, providing rapid screening for possible adulteration with cow's milk at no additional cost.

Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery (초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발)

  • Park, Jun-Woo;Kang, Ye-Seong;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Kyung-Suk;Kim, Tae-Yang;Park, Min-Jun;Baek, Hyeon-Chan;Song, Hye-Young;Jun, Sae-Rom;Lee, Su-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.316-328
    • /
    • 2021
  • In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves' Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.

Estimation of Moisture Content in Cucumber and Watermelon Seedlings Using Hyperspectral Imagery (초분광영상 이용 오이 및 수박 묘의 수분함량 추정)

  • Kim, Seong-Heon;Kang, Jeong-Gyun;Ryu, Chan-Seok;Kang, Ye-Seong;Sarkar, Tapash Kumar;Kang, Dong Hyeon;Ku, Yang-Gyu;Kim, Dong-Eok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • This research was conducted to estimate moisture content in cucurbitaceae seedlings, such as cucumber and watermelon, using hyperspectral imagery. Using a hyperspectral image acquisition system, the reflectance of leaf area of cucumber and watermelon seedlings was calculated after providing water stress. Then, moisture content in each seedling was measured by using a dry oven. Finally, using reflectance and moisture content, the moisture content estimation models were developed by PLSR analysis. After developing the estimation models, performance of the cucumber showed 0.73 of $R^2$, 1.45% of RMSE, and 1.58% of RE. Performance of the watermelon showed 0.66 of $R^2$, 1.06% of RMSE, and 1.14% of RE. The model performed slightly better after removing one sample from cucumber seedlings as outlier and unnecessary. Hence, the performance of new model for cucumber seedlings showed 0.79 of $R^2$, 1.10% of RMSE, and 1.20% of RE. The model performance combined with all samples showed 0.67 of $R^2$, 1.26% of RMSE, and 1.36% of RE. The model of cucumber showed better performance than the model of watermelon. This is because variables of cucumber are consisted of widely distributed variation, and it affected the performance. Further, accuracy and precision of the cucumber model were increased when an insignificant sample was eliminated from the dataset. Finally, it is considered that both models can be significantly used to estimate moisture content, as gradients of trend line are almost same and intersected. It is considered that the accuracy and precision of the estimating models possibly can be improved, if the models are constructed by using variables with widely distributed variation. The improved models will be utilized as the basis for developing low-priced sensors.