Food adulteration is a serious consumer fraud and a matter of concern to food processors and regulatory agencies. A range of analytical methods have been investigated to facilitate the detection of adulterated or mis-labelled foods & food ingredients but most of these require sophisticated equipment, highly-qualified staff and are time-consuming. Regulatory authorities and the food industry require a screening technique which will facilitate fast and relatively inexpensive monitoring of food products with a high level of accuracy. Near infrared spectroscopy has been investigated for its potential in a number of authenticity issues including meat speciation (McElhinney, Downey & Fearn (1999) JNIRS, 7(3), 145 154; Downey, McElhinney & Fearn (2000). Appl. Spectrosc. 54(6), 894-899). This report describes further analysis of these spectral sets using a hierarchical approach and binary decisions solved using logistic regression. The sample set comprised 230 homogenized meat samples i. e. chicken (55), turkey (54), pork (55), beef (32) and lamb (34) purchased locally as whole cuts of meat over a 10-12 week period. NIR reflectance spectra were recorded over the wavelength range 400-2498nm at 2nm intervals on a NIR Systems 6500 scanning monochromator. The problem was defined as a series of binary decisions i. e. is the meat red or white\ulcorner is the red meat beef or lamb\ulcorner, is the white meat pork or poultry\ulcorner etc. Each of these decisions was made using an individual binary logistic model based on scores derived from principal component or partial least squares (PLS1 and PLS2) analysis. The results obtained were equal to or better than previous reports using factorial discriminant analysis, K-nearest neighbours and PLS2 regression. This new approach using a combination of exploratory and logistic analyses also appears to have advantages of transparency and the use of inherent structure in the spectral data. Additionally, it allows for the use of different data transforms and multivariate regression techniques at each decision step.
This research was conducted to develop a method to remove the effect of surface temperature of Shingo pears for sugar content measurement. Sugar content was measured by a near-infrared spectrum analysis technique. Reflected spectrum and sugar content of a pear were used for developing regression models. For the model development, reflected spectrums having wavelengths in the range of 654 to 1,052nm were used. To remove the effect of surface temperature, special sample preparation techniques and partial least square (PLS) regression models were proposed and tested. 71 Shingo pears stored in a cold storage, which had 2$^{\circ}C$ inside temperature, were taken out and left in a room temperature for a while. Temperature and reflected spectrum of each pear was measured. To increase the temperature distribution of samples, temperature and reflected spectrum of each pear was measured four times with one hour twenty minutes interval. During the experiment, temperature of pears increased up to 17 $^{\circ}C$. The total number of measured spectrum was 284. Three groups of spectrum data were formed according to temperature distribution. First group had surface temperature of 14$^{\circ}C$ and total number of 51. Second group consisted of the first and the fourth experiment data which contained the minimum and the maximum temperatures. Third group consisted of 155 data with normal temperature-distribution. The rest data set were used for model evaluation. Results shelved that PLS model I, which was developed by using the first data group, was inadequate for measuring sugar content of pears which had different surface temperatures from 14$^{\circ}C$. After temperature compensation, sugar content predictions became close to the measured values. Since using many data which had wide range of surface temperatures, PLS model II and III were able to predict sugar content of pears without additional temperature compensation. PLS model IV, which included the surface temperatures as an independent variable. showed slightly improved performance(R$^2$=0.73). Performance of the model could be enhanced by using samples with more wide range of temperatures and sugar contents.
In this study, portable near infrared (NIR) system was newly integrated with a photodiode array detector, which has no moving parts and this system has been successfully applied for evaluation of human skin moisture. The good correlation between NIR absorbance and absolute water content of separated hairless mouse skin was, in vitro, showed depending on the water content (7.42-84.94%) using this portable NIR system. Partial least squares (PLS) regression was used for the calibration with the 1100-1650 nm wavelength range. For the practical use for the evaluation of human skin based on moisture, PLS model for human skin moisture was, in vivo, developed using the portable NIR system based on the relative water content values of stratum corneum from the conventional capacitance method. The PLS model showed a good correlation. This study indicated that the portable NIR system could be a powerful tool for human skin moisture, which may be much more stable to environmental conditions such as temperature and humidity, compared to conventional methods. Furthermore, in order to confirm the performance of newly integrated portable NIR system, scanning type conventional NIR spectrometer was used in the same experiments and the results were compared.
Afkhami, Abbas;Sarlak, Nahid;Zarei, Ali Reza;Madrakian, Tayyebeh
Bulletin of the Korean Chemical Society
/
제27권6호
/
pp.863-868
/
2006
The partial least squares (PLS-1) calibration model based on spectrophotometric measurement, for the simultaneous determination of sulfite and sulfide is described. This method is based on the difference between the rate of the reaction of sulfide and sulfite with Malachite Green in pH 7.0 buffer solution and at 25 ${^{\circ}C}$. The absorption kinetic profiles of the solutions were monitored by measuring the decrease in the absorbance of Malachite Green at 617 nm in the time range 10-180 s after initiation of the reactions with 2 s intervals. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 24 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.030-1.5 and 0.030-1.2 $\mu$g m$L ^{-1}$ for sulfite and sulfide, respectively. The proposed method was successfully applied to simultaneous determination of sulfite and sulfide in water samples and whole human blood.
Alcohol consumption triggers toxic effect to organs and tissues in the human body. The risks are essentially thought to be related to ethanol content in alcoholic beverages. The identification of ethanol in blood samples requires rapid, minimal sample handling, and non-destructive analysis, such as Raman Spectroscopy. This study aims to apply Raman Spectroscopy for identification of ethanol in blood samples. Silver nanoparticles were synthesized to obtain Surface Enhanced Raman Spectroscopy (SERS) spectra of blood samples. The SERS spectra were used for Partial Least Square (PLS) for determining ethanol quantitatively. To apply PLS method, $920{\sim}820cm^{-1}$ band interval was chosen and the spectral changes of the observed concentrations statistically associated with each other. The blood samples were examined according to this model and the quantity of ethanol was determined as that: first a calibration method was established. A strong relationship was observed between known concentration values and the values obtained by PLS method ($R^2=1$). Second instead of then, quantities of ethanol in 40 blood samples were predicted according to the calibration method. Quantitative analysis of the ethanol in the blood was done by analyzing the data obtained by Raman spectroscopy and the PLS method.
사과의 영양진단에서 사과잎 분석을 신속히 하기 위한 방법을 모색하기 위해 생잎과 건조잎을 이용해 근적의 스펙트럼을 측정하고 이를 질소 함량과의 최적의 상관관계를 도출하기 위해 부분소자승(PLS)과 주성분회귀(PCR)과 같은 다변량 분석법을 이용하여 비파괴 검량식을 작성하였다. 또한 검량식 작성에서 비파괴 측정 정확도를 향상시키기 위하여 smoothing, mean normalization, multiplicative scatter correction (MSC). derivative 등의 다양한 데이터 전처리 조작을 수행하여 정확도 향상 가능성을 조사하였다. 사과 건조잎의 비파괴 측정 가능성을 조사한 결과 PLS-1 모델에서 Norris first derivate하였을 태 RMSEP가 $0.6999g\;kg^{-1}$ 로 가장 좋았으며, 생잎은 Savitzky-Golay first derivate하였을 때에 RMSEP 가 $1.202g\;kg^{-1}$으로 가장 좋았다. 건조잎의 PCR 모델은 mean normalization 처리 후 Savitzky-Golay first derivative하였을 때가 RMSEP 가 $0.553g\;kg^{-1}$, 이었으며 생잎에서도 RMSEP는 $1.047g\;kg^{-1}$로 나타났다. 이와 같은 견과로서 사과의 생잎과 건조잎의 분석이 근적외분석기술에 의해 가능할 것으로 판단된다.
흡수 분광법에 의해 얻은 스펙트럼을 주성분분석(principal analysis, PCA) 으로 자료를 요약하여 주성분 회귀분서(principal component regression, PCR)과 부분 최소자승법(partial least squares, PLS)으로 음이온과 비이온 계면활성제(anionic and nonionic surfactant)를 동시에 정량하는 방법에 대하여 연구하였다. 두 가지 계면활성제가 서로 다른 농도로 혼합되어 있는 26개의 시료용액을 400~700 nm 범위에서 스펙트럼을 얻었고, 이를 이용하여 PCR과 PLS회귀모델을 얻었다. 두 가지 계면활성제가 서로 다른 농도로 포함된 5개의 외부검정용 시료들의 스펙트럼들을 이용해서 회귀모델의 적합성을 검정하기 위하여 외부검정용 시료의 농도를 계산하였다. 계산된 농도를 이용하여 relative standard error of prediction(RSEP$_{\alpha}$)를 구하여 회귀모델의 적합성을 검정하였다.
부분 최소자승회귀, 균형 잡힌 realization, 균형 잡힌 truncation을 결합함으로써, MIMO 상태공간 모델의 모델인식을 위한 효과적인 방법이 개발되었다. 개발된 방법에서 MIMO 시스템은 고차 ARX 모델로 표현되는 다중 MISO 시스템으로 분해된다. 이 때, ARX 모델의 파라미터는 부분 최소자승회귀에 의해 추정된다. 그 후, realization을 통해 각각의 MISO ARX 전달함수에 대한 MISO 상태공간 모델이 만들어지며, MIMO 상태공간 모델로 결합된다. 최종적으로, 균형 잡힌 realization과 균형 잡힌 truncation을 통해 최소의 균형 잡힌 MIMO 상태공간 모델이 얻어진다. 제안된 방법은 고압 $CO_2$ 용해도 측정 실험 장치의 온도제어를 위한 모델 예측 제어의 설계에 적용되었다.
본 연구는 컨테이너선의 연료 소비 패턴의 발견을 위해 운항데이터 분석의 통계적 절차를 제안한다. 우리는 현 시점의 연료 소비를 발견하기 위해 연료 소비에 영향을 미치는 변수들을 파악하는 동시에 예측 모델을 개발 및 적용하는 것을 목적으로 한다. 선박의 데이터는 크게 운항데이터와 기기데이터로 분류할 수 있으며, 운항데이터는 항로, 항해 정보, 대수속도, 대지속도, 바람과 같은 외력에 대한 정보 등이 있고, 기기데이터는 엔진출력, RPM, 연료 소모량, 기기들의 온도 및 압력 등이 있다. 본 연구에서, 우리는 선박에 미치는 외력의 영향을 Beaufort Scale (BFS)을 기준으로 구분한 후에 PLS 회귀분석을 통한 예측 모델을 개발하였다.
We have evaluated the application of spectroscopy using an insertion-type fiber-optic probe and a sensor at wavelengths from 400 to 1,100 nm to the measurement of milk fat content on dairy farms. The internal reflectance ratios of 183 milk samples were determined with a fiber-optic spectrophotometer at 5$^{\circ}C$, 20$^{\circ}C$ and 40$^{\circ}C$. Partial least squares (PLS) regression was used to develop calibration models for the milk fat. The best accuracy of determination was found for an equation that was obtained using smoothed internal reflectance data and three PLS factors at 20$^{\circ}C$. The correlation coefficients between predicted and reference milk fat at 5$^{\circ}C$, 20$^{\circ}C$ and 40$^{\circ}C$ were r=0.753, r=0.796 and r=0.783, respectively. The predictive explained variances ($Q^2$) of the final model, moreover, were more than 0.550 at all temperatures, and the regression coefficients of determination ($R^2$) were more than 0.6 (60%). Our results indicate that milk has different internal reflectance measured in the range of visible and near infrared wavelengths (400 to 1,100 nm), depending on its fat content.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.