• Title/Summary/Keyword: PLS-Regression model

Search Result 75, Processing Time 0.025 seconds

A Method for Screening Product Design Variables for Building A Usability Model : Genetic Algorithm Approach (사용편의성 모델수립을 위한 제품 설계 변수의 선별방법 : 유전자 알고리즘 접근방법)

  • Yang, Hui-Cheol;Han, Seong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-62
    • /
    • 2001
  • This study suggests a genetic algorithm-based partial least squares (GA-based PLS) method to select the design variables for building a usability model. The GA-based PLS uses a genetic algorithm to minimize the root-mean-squared error of a partial least square regression model. A multiple linear regression method is applied to build a usability model that contains the variables seleded by the GA-based PLS. The performance of the usability model turned out to be generally better than that of the previous usability models using other variable selection methods such as expert rating, principal component analysis, cluster analysis, and partial least squares. Furthermore, the model performance was drastically improved by supplementing the category type variables selected by the GA-based PLS in the usability model. It is recommended that the GA-based PLS be applied to the variable selection for developing a usability model.

  • PDF

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.

Internal Quality Estimation of Korean Red Ginseng Using VIS/NIR Transmittance Spectrum (가시광선 및 근적외선 투과스펙트럼을 이용한 홍삼의 내부품질예측)

  • 손재룡;이강진;김기영;강석원;최규홍;장익주
    • Journal of Biosystems Engineering
    • /
    • v.29 no.4
    • /
    • pp.335-340
    • /
    • 2004
  • This study was conducted to evaluate the internal quality of Korean red ginseng using VIS/NIR transmittance spectra. To classify the internal qualities, partial least squares(PLS) regression was conducted. The main results are as follows: To develop the PLS model, several wave bands were divided and incorporated into the model. Among the bands, the wavelength range of 550-1,020nm, excluded noise signal, showed the best evaluation results. Effect of step size on the performance of quality evaluation showed optimal at 15 steps. In order to enhance the accuracy of quality evaluation, the abnormal spectrum shape was considered first and then the PLS model was applied. Among the 150 samples, 12 samples were evaluated by the spectrum shape. In this study, to develop the optimal PLS regression model, among the 150 samples, 138 samples was used with exception of 12 samples which could evaluate the spectrum shape. The result of quality evaluation was promising as SEC and correlation coefficient were 1.09 and 0.967, respectively, and SEP and correlation coefficient were 1.04 and 0.958, respectively.

A Statistical Approach to Screening Product Design Variables for Modeling Product Usability (사용편의성에 영향을 미치는 제품 설계 변수의 통계적 선별 방법)

  • Kim, Jong-Seo;Han, Seong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.23-37
    • /
    • 2000
  • Usability is one of the most important factors that affect customers' decision to purchase a product. Several studies have been conducted to model the relationship between the product design variables and the product usability. Since there could be hundreds of design variables to be considered in the model, a variable screening method is required. Traditional variable screening methods are based on expert opinions (Expert screening) in most Kansei engineering studies. Suggested in this study are statistical methods for screening important design variables by using the principal component regression(PCR), cluster analysis, and partial least squares(PLS) method. Product variables with high effect (PCR screening and PLS screening) or representative variables (Cluster screening) can be used to model the usability. Proposed variable screening methods are used to model the usability for 36 audio/visual products. The three analysis methods (PCR, Cluster, and PLS) show better model performance than the Expert screening in terms of $R^2$, the number of variables in the model, and PRESS. It is expected that these methods can be used for screening the product design variables efficiently.

  • PDF

PREPROCESSING EFFECTS ON ON-LINE SSC MEASUREMENT OF FUJI APPLE BY NIR SPECTROSCOPY

  • Ryu, D.S.;Noh, S.H.;Hwang, I.G.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.560-568
    • /
    • 2000
  • The aims of this research were to investigate the preprocessing effect of spectrum data on prediction performance and to develop a robust model to predict SSC in intact apple. Spectrum data of 320 Fuji apples were measured with the on-line transmittance measurement system at the wavelength range of 550∼1100nm. Preprocess methods adopted for the tests were Savitzky Golay, MSC, SNV, first derivative and OSC. Several combinations of those methods were applied to the raw spectrum data set to investigate the relative effect of each method on the performance of the calibration model. PLS method was used to regress the preprocessed data set and the SSCs of samples, and the cross-validation was to select the optimal number of PLS factors. Smoothing and scattering corection were essential in increasing the prediction performance of PLS regression model and the OSC contributed to reduction of the number of PLS factors. The first derivative resulted in unfavorable effect on the prediction performance. MSC and SNV showed similar effect. A robust calibration model could be developed by the preprocessing combination of Savitzky Golay smoothing, MSC and OSC, which resulted in SEP= 0.507, bias=0.032 and R$^2$=0.8823.

  • PDF

Determination of Human Skin Moisture in the Near-Infrared Region from 1100 to 2200 nm by Portable NIR System (1100∼2200 nm 파장 영역의 휴대용 근적외선 분광분석기를 이용한 사람피부의 수분측정)

  • 안지원;서은정;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.47 no.3
    • /
    • pp.148-153
    • /
    • 2003
  • Skin moisture is an important factor in skin health. Measurement of moisture content can provide diagnostic information on the condition of skin. In this study, a portable near-infrared (NIR) system was newly integrated with a photo diode array detector that has no moving parts, and this system has been successfully applied for the evaluation of human skin moisture. Diffuse reflectance spectra were collected and transformed to absorbance using 1 nm step size over the wavelength range of 1100 nm to 2200 nm. Partial least squares regression (PLSR) was applied to develop a calibration model. For practical use for the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo using the portable NIR system on the basis of the relative water content values of stratum corneum from the conventional capacitance method. The PLS model showed a good correlation. The calibration with the use of PLS model predicted human moisture with a standard error of prediction (SEP) of 3.5 at 1120∼1730 nm range. This study showed the possibility of skin moisture measurement using portable NIR system.

Presumed Influence Factors of User Satisfaction of Seoul Digital Industrial Complex using PLS-Regression Model (PLS 회귀분석을 통한 서울디지털산업단지 이용자 만족도 영향요인 규명)

  • Jeong, Gwang-Seop;Park, Gyu-Yong;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3931-3943
    • /
    • 2014
  • Domestic industrial complexes have more loss competitiveness due to their deterioration length and environmental problems. Therefore, it is necessary to suggest the direction of realignment as advanced industrial estates and establish new alternative plans for improving the quality of public and environmental designs as well as reinforcing the competitive power. This study examined the design planning factors affecting the service users' satisfaction in the Seoul Digital Industrial Complex through a PLS regression model. The research result showed that 12 crucial design planning factors out of a total 31 planning factors have a more than 1.0 VIP. In addition, 8 comparatively important planning aspects that were measured between 0.9 and 1.0 were also investigated. These factors were the strategic design planning factors estimating the quantitative priority while enforcing the design improvement project and they should be considered as a useful material for strengthening the competitive power of the Seoul Digital Industrial Complex.

Determination of Water Content in Skin by using a FT Near Infrared Spectrometer

  • Suh Eun-Jung;Woo Young-Ah;Kim Hyo-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.458-462
    • /
    • 2005
  • The water content of skin was determined using a FT near infrared (NIR) spectrometer. NIR diffuse reflectance spectra were collected from hairless mouse, in vitro, and from human inner arm, in vivo. It was found that the variation of NIR absorbance band 1450 nm from OH vibration of water and 1940 nm from the combination involving OH stretching and OH deformation, depending on the absolute water content of separated hairless mouse skin, in vitro, using the FT NIR spectrometer. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed good correlation. For practical use of the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo on the basis of the relative water content of stratum corneum from the conventional capacitance method. The PLS model predicted human skin moisture with a standard errors of prediction (SEP) of 3.98 at 1130-1830 nm range. These studies showed the possibility of a rapid and nondestructive skin moisture measurement using FT NIR spectrometer.

Development of Prediction Model for Moisture and Protein Content of Single Kernel Rice using Spectroscopy (분광분석법을 이용한 단립 쌀의 함수율 및 단백질 함량 예측모델 개발)

  • 김재민;최창현;민봉기;김종훈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The objectives of this study were to develop models to predict the contents of moisture and protein of single kernel of brown rice based on visible/NIR (near-infrared) spectroscopic technique. The reflectance spectra of rice were obtained in the range of the wavelength 400 to 2,500 nm with 2 nm intervals. Multiple linear regression(MLR) and partial least squares (PLS) were used to develop the models. The MLR model using the first derivative spectra(10 nm of gap) with Standard Normal Variate and Detrending (SNV and Drt.) preprocessing showed the best results to predict moisture content of the sin린e kernel brown rice. To predict the protein content of a single kernel of brown ricer the PLS model used the raw spectra with multiplicative scatter correction(MSC) preprocessing over the wavelength of 1,100~1,500 nm.

  • PDF

Use of partial least squares analysis in concrete technology

  • Tutmez, Bulent
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Multivariate analysis is a statistical technique that investigates relationship between multiple predictor variables and response variable and it is a very commonly used statistical approach in cement and concrete industry. During model building stage, however, many predictor variables are included in the model and possible collinearity problems between these predictors are generally ignored. In this study, use of partial least squares (PLS) analysis for evaluating the relationships among the cement and concrete properties is investigated. This regression method is known to decrease the model complexity by reducing the number of predictor variables as well as to result in accurate and reliable predictions. The experimental studies showed that the method can be used in the multivariate problems of cement and concrete industry effectively.