• 제목/요약/키워드: PLS (Partial least squares regression)

검색결과 100건 처리시간 0.031초

Combining Ridge Regression and Latent Variable Regression

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.51-61
    • /
    • 2007
  • Ridge regression (RR), principal component regression (PCR) and partial least squares regression (PLS) are among popular regression methods for collinear data. While RR adds a small quantity called ridge constant to the diagonal of X'X to stabilize the matrix inversion and regression coefficients, PCR and PLS use latent variables derived from original variables to circumvent the collinearity problem. One problem of PCR and PLS is that they are very sensitive to overfitting. A new regression method is presented by combining RR and PCR and PLS, respectively, in a unified manner. It is intended to provide better predictive ability and improved stability for regression models. A real-world data from NIR spectroscopy is used to investigate the performance of the newly developed regression method.

  • PDF

Expressions for Shrinkage Factors of PLS Estimator

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1169-1180
    • /
    • 2006
  • Partial least squares regression (PLS) is a biased, non-least squares regression method and is an alternative to the ordinary least squares regression (OLS) when predictors are highly collinear or predictors outnumber observations. One way to understand the properties of biased regression methods is to know how the estimators shrink the OLS estimator. In this paper, we introduce an expression for the shrinkage factor of PLS and develop a new shrinkage expression, and then prove the equivalence of the two representations. We use two near-infrared (NIR) data sets to show general behavior of the shrinkage and in particular for what eigendirections PLS expands the OLS coefficients.

  • PDF

사용편의성 모델수립을 위한 제품 설계 변수의 선별방법 : 유전자 알고리즘 접근방법 (A Method for Screening Product Design Variables for Building A Usability Model : Genetic Algorithm Approach)

  • 양희철;한성호
    • 대한인간공학회지
    • /
    • 제20권1호
    • /
    • pp.45-62
    • /
    • 2001
  • This study suggests a genetic algorithm-based partial least squares (GA-based PLS) method to select the design variables for building a usability model. The GA-based PLS uses a genetic algorithm to minimize the root-mean-squared error of a partial least square regression model. A multiple linear regression method is applied to build a usability model that contains the variables seleded by the GA-based PLS. The performance of the usability model turned out to be generally better than that of the previous usability models using other variable selection methods such as expert rating, principal component analysis, cluster analysis, and partial least squares. Furthermore, the model performance was drastically improved by supplementing the category type variables selected by the GA-based PLS in the usability model. It is recommended that the GA-based PLS be applied to the variable selection for developing a usability model.

  • PDF

Unified Non-iterative Algorithm for Principal Component Regression, Partial Least Squares and Ordinary Least Squares

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.355-366
    • /
    • 2003
  • A unified procedure for principal component regression (PCR), partial least squares (PLS) and ordinary least squares (OLS) is proposed. The process gives solutions for PCR, PLS and OLS in a unified and non-iterative way. This enables us to see the interrelationships among the three regression coefficient vectors, and it is seen that the so-called E-matrix in the solution expression plays the key role in differentiating the methods. In addition to setting out the procedure, the paper also supplies a robust numerical algorithm for its implementation, which is used to show how the procedure performs on a real world data set.

  • PDF

Shrinkage Structure of Ridge Partial Least Squares Regression

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.327-344
    • /
    • 2007
  • 다중공선성의 데이터에 사용되는 대표적인 편향회귀방법은 능형회귀(RR), 주성분회귀(PCR), 부분최소제곱회귀(PLS) 등이다. 이 회귀방법들은 계수베거 추정량의 놈(norm)이 모두 보통 최소제곱회귀(OLS)의 추정량의 놈보다 작아진다는 의미에서 축소회귀라 부른다. 새로운 회귀방법으로 RR과 PCR을 결합한 능형주성분회귀(RPCR)가 있고 RR과 PLS를 결합한 능형부분최소제곱회귀(RPLS)가 있으며 이들도 또한 축소회귀이다. 이들 추정량은 X'X의 고유벡터들의 선형결합으로 나타낼 수 있고 따라서 각 고유방향에서 OLS에 비해 얼마나 축소되는지를 연구할 수 있다. 본 논문에서는 먼저 이들 추정량을 일반적인 축소인자의 식으로 나타내고 이를 이용하여 MSE의 일반식을 구하였으며 PLS 추정량의 MSE 식도 구하였다. 그리고 RPLS의 축소인자 식을 두 가지 다른 형태로 유도하였다. RPLS의 경우도 이 축소인자 식을 MSE의 일반식에 대입하면 MSE 식이 바로 얻어진다. 그러나 PLS나 RPLS의 축소인자는 y의 복잡한 비선형이 되어 결정적이 아니므로 이들 추정량의 MSE는 근사적인 식이라 할 수 있다. 따라서 PLS나 RPLS를 평가하기 위해 이 MSE를 사용하는 것은 제한적이며, 경험적인 방법으로 이들 회귀의 수행성을 평가하는 것이 필요하다. 다중공선성의 대표적인 데이터인 근적외선 분광 데이터를 이용하여 이 유도된 회귀의 축소인자 값이 인자수에 따라 어떻게 변화하는지와 전체적인 축소 비율도 살펴보았다. 이들의 축소 형태를 잘 이해하면 회귀방법들의 예측력과 안정성을 파악하는데 많은 도움이 되리라 판단된다.

  • PDF

순차적 부분최소제곱 회귀적합에 의한 시간경로 유전자 발현 자료의 결측치 추정 (Missing Values Estimation for Time Course Gene Expression Data Using the Sequential Partial Least Squares Regression Fitting)

  • 김경숙;오미라;백장선;손영숙
    • 응용통계연구
    • /
    • 제21권2호
    • /
    • pp.275-290
    • /
    • 2008
  • 마이크로어레이 유전자 발현 자료는 대용량이며 또한 관측 과정이 복잡하여 결측치가 빈번하게 발생된다. 본 논문에서는 관측 시점 간에 상관성을 갖는 시간경로 유전자 발현 자료에 대한 결측치 추정을 위하여 순차적 부분최소제곱(sequential partial least squares: SPLS) 회귀적합 방법을 제안한다. 이는 순차적 기법과 부분최소제곱(partial least squares: PLS) 회귀적합 방법을 결합시킨 것이다. 세 가지의 이스트(yeast) 시간경로 자료들에 대한 몇 가지 모의실험을 통하여 제안된 결측치 추정방법의 유용성을 평가한다.

Simultaneous Kinetic Spectrophotometric Determination of Sulfite and Sulfide Using Partial Least Squares (PLS) Regression

  • Afkhami, Abbas;Sarlak, Nahid;Zarei, Ali Reza;Madrakian, Tayyebeh
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권6호
    • /
    • pp.863-868
    • /
    • 2006
  • The partial least squares (PLS-1) calibration model based on spectrophotometric measurement, for the simultaneous determination of sulfite and sulfide is described. This method is based on the difference between the rate of the reaction of sulfide and sulfite with Malachite Green in pH 7.0 buffer solution and at 25 ${^{\circ}C}$. The absorption kinetic profiles of the solutions were monitored by measuring the decrease in the absorbance of Malachite Green at 617 nm in the time range 10-180 s after initiation of the reactions with 2 s intervals. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 24 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.030-1.5 and 0.030-1.2 $\mu$g m$L ^{-1}$ for sulfite and sulfide, respectively. The proposed method was successfully applied to simultaneous determination of sulfite and sulfide in water samples and whole human blood.

Investigation of Partial Least Squares (PLS) Calibration Performance based on Different Resolutions of Near Infrared Spectra

  • Chung, Hoe-Il;Choi, Seung-Yeol;Choo, Jae-Bum;Lee, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.647-651
    • /
    • 2004
  • Partial Least Squares (PLS) calibration performance has been systematically investigated by changing spectral resolutions of near-infrared (NIR) spectra. For this purpose, synthetic samples simulating naphtha were prepared to examine the calibration performance in complex chemical matrix. These samples were composed of $C_6-C_9$ normal paraffin, iso-paraffin, naphthene, and aromatic hydrocarbons. NIR spectra with four different resolutions of 4, 8, 16, and 32$cm^{-1}$ were collected and then PLS regression was performed. For PLS calibration, five different group compositions (such as total paraffin content) and six different pure components (such as benzene concentration) were selected. The overall results showed that at least 8$cm^{-1}$ resolution was required to resolve the complex chemical matrix such as naphtha. It was found that the influence of resolution on the PLS calibration was varied by the spectral features of a component.

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.109-115
    • /
    • 2020
  • 본 논문에서는 부분 최소 제곱(PLS) 회귀 모형을 이용한 인공지능(AI) 기술 분석을 제안한다. AI 기술은 이제 우리 사회의 대부분의 영역에 영향을 미치고 있다. 따라서 이 기술에 대한 정확한 이해가 필요하게 된다. AI 기술을 분석하기 위하여 전 세계 특허 데이터베이스로부터 AI 관련 특허 문서를 수집하고 텍스트 마이닝 기법을 사용하여 수집된 특허 문서에서 AI 기술 키워드를 추출한다. 본 연구에서는 추출된 AI 키워드 데이터를 PLS 회귀 모형으로 분석한다. 바이오정보학, 사회과학 및 공학 등 다양한 분야에서 고급 데이터 분석을 위하여 사용되는 PLS 회귀 모형은 부분 최소 제곱 기법을 기반으로 한다. 제안 방법의 성능을 확인하기 위하여 AI 특허 문서를 사용하여 분석 실험을 수행하고 제안하는 연구가 실제 문제에 어떻게 적용될 수 있는지 보여 준다. 본 논문은 AI 기술뿐만 아니라 다른 기술 분야에도 적용 할 수 있다.

Pathway and Network Analysis in Glioma with the Partial Least Squares Method

  • Gu, Wen-Tao;Gu, Shi-Xin;Shou, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3145-3149
    • /
    • 2014
  • Gene expression profiling facilitates the understanding of biological characteristics of gliomas. Previous studies mainly used regression/variance analysis without considering various background biological and environmental factors. The aim of this study was to investigate gene expression differences between grade III and IV gliomas through partial least squares (PLS) based analysis. The expression data set was from the Gene Expression Omnibus database. PLS based analysis was performed with the R statistical software. A total of 1,378 differentially expressed genes were identified. Survival analysis identified four pathways, including Prion diseases, colorectal cancer, CAMs, and PI3K-Akt signaling, which may be related with the prognosis of the patients. Network analysis identified two hub genes, ELAVL1 and FN1, which have been reported to be related with glioma previously. Our results provide new understanding of glioma pathogenesis and prognosis with the hope to offer theoretical support for future therapeutic studies.