• Title/Summary/Keyword: PLLIF(Planar liquid laser-induced fluorescence).

Search Result 11, Processing Time 0.018 seconds

Spray Charaeteristics and Exhaust Emission Tests far a Diesel Engine Using Emulsified Fuels (에멀젼 연료를 이용한 디젤엔진의 분무 및 배기특성 연구)

  • 서희준;오승묵;허환일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.60-68
    • /
    • 2002
  • Experiments have been conducted to investigate the effects of emulsified fuels on the spray characteristics and exhaust emissions in a diesel engine. Four different fuels were examined : diesel, emulsified fuels with water contents which were varied with 13, 15, and l7wt%. Characteristics of fuel spray were measured by an optical method, PLLIF(planar liquid laser induced fluorescence). Compared to diesel fuel, emulsified fuels which had relatively high kinematic viscosity showed smaller spray angle and longer spray tip penetration. The qualitative droplet distributions of emulsified fuels showed worse atomization process than that of diesel fuel. As the water contents were increased, PM and NOx could be reduced simultaneously. It was specially noted that the emulsified fuel with l7wt% water content was found to be the best in reducing rates, NOx 30% and PM 40%.

Assessment of PLLIF Measurement for Spray Mass Distribution of Like-Doublet Injector (Like-Doublet 인젝터의 분무 질량분포 측정을 위한 PLLIF기법의 신뢰성 평가)

  • Jung Kihoon;Koh Hyeonseok;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.98-106
    • /
    • 2003
  • A PLLIF (Planar Liquid Laser Induced Fluorescence) technique has been known to be a useful tool for the measurement of the spray patterns for various spray injectors because it can obtain two-dimensional images with high spatial resolutions without any intrusion on the spray field. In case of dense spray, however, the secondary emission as well as the extinction of an incident laser beam or a fluorescence signal can cause errors in quantifying a mass distribution. Unfortunately, a like-doublet injector which has a dense spray zone at the center may not be a good example or the application of the PLLIF technique. Therefore, we took PLLIF data for the like-doublet injector with a 12 bit color CCD camera by varying laser power, and then assessed their accuracy by comparing with the data obtained with a mechanical patternator and a PDPA (Phase Doppler Particle Analyzer). The experimental results showed that the gray level of fluorescence signal increases nonlinearly due to a secondary emission at the dense spray zone but this nonlinearity can be avoided by reducing the incident laser beam power. In addition, the mass flux distribution of the spray could be obtained by using the mass concentration data from PLLIF technique and the velocity profiles of liquid drops, and this distribution showed good agreement with that of mechanical pattemator. Therefore, it is possible that the PLLIF technique can be successfully applied to finding the mass distributions of like-doublet injectors.

  • PDF

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

액체로켓용 충돌형 인젝터의 질량분포 측정을 위한 PLLIF 기법에 대한 연구

  • 정기훈;고현석;이인수;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.1-1
    • /
    • 2002
  • PLLIF(Planar Laser Liquid Induced Fluorescence) 기법은 분무장을 교란시키지 않고 고해상도의 2차원 질량분포를 빠르게 측정할 수 있기 때문에 기존의 기계적인 분무 분포 측정방법의 한계를 극복하였을 뿐만 아니라 접근이 불가능하였던 인젝터 근방의 분무에 대한 중요한 정보를 제공하고 있다. 그러나 레이저 광을 받은 액적에 의한 산란광의 강도가 클 경우에는 인접한 액적들을 형광시킬 수 있고 액적의 형광신호가 액적들을 통과하면서 감쇠되는 이차산란에 의한 오차는 PLLIF 기법의 정량화에 가장 큰 난점으로 인식되고 있다. 특히 이러한 현상은 분무 분포의 밀도가 높고 액적의 크기가 클수록 강하게 나타나는데, 액체로켓에서 일반적으로 사용되고 있는 like-doublet 인젝터는 이러한 분무 특성을 갖는다. 따라서 Mechanical Patternator 및 PDPA(Phase Doppler Particle Analyzer)로부터 측정한 like-doublet 인젝터의 분무 질량 분포 결과와 비교하여 이차산란에 의한 오차를 파악하여 PLLIF 기법의 적용 가능성을 진단하였다.

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

Spray Plume Characteristics of Liquid Jets in Subsonic Crossflows (수직분사제트의 액적영역 분무특성에 대한 연구)

  • Song, Jin-Kwan;Ahn, Kyu-Bok;Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.113-120
    • /
    • 2006
  • The effect of internal liquid flow on spray plume characteristics was performed experimentally in subsonic cross flows. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of the research are to investigate the effect of internal liquid flow on the spray plume characteristics and compare the trajectory of spray plume with previous works. The results suggest that the trajectory and width of spray plume can be correlated as a function of liquid/air momentum flux ratio(q), injector diameter and normalized distance from the injector exit(x/d). It's also found that the injector internal turbulence influences the spray plume characteristics significantly.

  • PDF

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.

A Planar Imaging System for Spray Patternation (분무 패턴 측정을 위한 평면 이미지 기법)

  • 이경진;정기훈;윤영빈;정경석;정인석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.7-7
    • /
    • 1998
  • 액체 연료 분포의 균일성과 대칭성은 연소 효율을 높이고, 공해 물질을 줄이는데 있어서 필수적인 요소이기 때문에 분무 패턴을 정량적으로 해석하는 것은 매우 중요하다. 고전적으로 사용되고 있는 mechanical patternator는 ⅰ) 유동을 교란시키고, ⅱ) 공간 분해능이 떨어지며, ⅲ) 복잡한 재순환 유동이나 화학 반응이 있는 유동에서의 적용이 어렵다는 단점을 가지고 있다. 이러한 단점들을 극복하기 위하여 레이저를 이용한 optical patternator에 대한 연구가 진행되고 있다. Optical patternator는 유동을 교란시키지 않으면서 고해상도의 분무 패턴 측정을 할 수 있다. 형광 신호는 물질의 체적에 비례한다. 따라서, 레이저 평면광을 분무에 조사시켜 주어서 유도되는 형광 신호를 이용하는 평면액체 레이저 유도 형광법(PLLIF : Planar Liquid Laser Induced Fluorescence)은 분무패턴을 알아보는 매우 유용한 방법이다.

  • PDF

The Comparison of Spray Characteristics between FOOF and FOF Injectors used in Liquid Rockets (액체로켓용 FOOF와 FOF 인젝터의 분무특성 비교)

  • 임병직;정기훈;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • Triplet(FOF or OFO) injectors are commonly applied to liquid rockets which use LOX and hydrocarbon propellants. The FOF type injector has been known to have an advantage for the although to show lower combustion performance as compared by the OFO type. However, a large disparity between oxidizer and fuel orifice diameters of the FOF type injector may reduce both the combustion efficiency and stability so that as FOOF split triplet injector which splits a single oxidizer orifice into double orifices was designed. In the present study, spray characteristics of the FOOF injector were investigated and compared with those of the FOF injector undo. cold flow conditions. Mass distributions of oxidizer and fuel for both injectors were measured by using a PLLIF (Planar Liquid Laser Induced Fluorescence)technique, and each drop size was also measured by using an instantaneous photographic method. From the experimental results, we found out that FOOF shows more stable mixing efficiencies than the FOF. As for the drop size of both oxidizer and fuel, there was not a large difference between two injector types.