• Title/Summary/Keyword: PLEIADES 영상

Search Result 3, Processing Time 0.014 seconds

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.

Possibility Estimating of Unaccessible Area on 1/5,000 Digital Topographic Mapping Using PLEIADES Images (PLEIADES 영상을 활용한 비접근지역의 1/5,000 수치지형도 제작 가능성 평가)

  • Shin, Jin Kyu;Lee, Young Jin;Choi, Hae Jin;Lee, Jun Hyuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.299-309
    • /
    • 2014
  • This paper evaluated the possibility for 1/5,000 digital topographic mapping by using PLEIADES images of 0.5m GSD(Ground Sampling Distance) resolution that has recently launched. Those results of check points by applying the initial RPC(Rational Polynomial Coefficient) of PLEIADES images came out as; RMSE of those were $X={\pm}1.806m$, $Y={\pm}2.132m$, $Z={\pm}1.973m$. Also, if we corrected geometric correction using 16 GCP(Ground Control Point)s, the results of RMSE became $X={\pm}0.104m$, $Y={\pm}0.171m$, $Z={\pm}0.036m$, and t he RMSE of check points were $X={\pm}0.357m$, $Y={\pm}0.239m$, $Z={\pm}0.188m$; which of those results indicated the accuracy of standard adjustment complied in error tolerances of the 1/5,000 scale. Additionally, we converted coordinates of points, obtained by TerraSAR. for comparing with measurements from GPS(Global Positioning System) surveying. The RMSE of comparing converted and GPS points were $X={\pm}0.818m$, $Y={\pm}0.200m$, $Z={\pm}0.265m$, which confirmed the possibility for 1/5,000 digital topographic mapping with PLEIADES images and GCPs. As method of obtaining GCPs in unaccessible area, however, the outcome evaluation of GCPs extracted from TerraSAR images was not acceptable for 1/5,000 digital topographic mapping. Therefore, we considered that further researches are needed on applicability of GCPs extracted from TerraSAR images for future alternative method.

Assessment of Possibility for Unaccessible Areas Positioning Using Ortho Imagery (정사영상을 이용한 비접근지역의 위치결정 가능성 평가)

  • Kang Joon-Mook;Lee Yong-Woong;Jo Hyeon-Wook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.287-291
    • /
    • 2006
  • Currently application of high-resolution satellite imagery is expanding with development of high tech optical and space aviation technology. Although using 3 dimensional modeling technology in order to attain accurate terrain information using existing ground control points is the most dependable reference data, such means are unapplicable for certain area because of it's limited access. In this study, we have researched into ways to utilizing high resolution satellite images from IKONOS and Quickbird, and sub-meter class satellites images that will be utilized In the future such as Arirang images and PLEIADES images for unaccessible areas. For that purpose we have created accuracy verification and GCP files for existing ortho-imagery and digital elevation model. The results showed that accuracy of ortho-Imagery and digital elevation model was RMSE X:3.043m, Y:2.921m, Z:6.139m. Also, after ortho-rectifying IKONOS images using ground control points extracted from ortho imagery and digital elevation model the accuracy of the imagery was RMSE X:3.243m, Y:2.067m, Z:1.872m.

  • PDF