• 제목/요약/키워드: PLC isozymes

Search Result 15, Processing Time 0.021 seconds

Inhibition of the Activity of Phosphoinositide-Specific Phospholipase C Isozymes by Antipsychotics and Antidepressants

  • Joo, Yeon-Ho;Park, Eun-Sil;Park, Joo-Bae;Suh, Pann-Ghill;Kim, Yong-Sik;Ryu, Sung-Ho
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.121-124
    • /
    • 1993
  • To elucidate the effect of antipsychotics and antidepressants on phosphoinositide(Pl) second massenger system, we studied the dose-dependent inhibition of the phosphoinositide-specific phospholipase C(PLC) isozymes, ${\beta}_1,\;{\gamma}_1$ and${\delta}_1,$ by fluphenazine and haloperidol as antipsychotics, and amitriptyline, maprotiline and mianserin as antidepressants. All the antipsychotics and antidepressants tested showed inhibition on at least one of the PLC isozymes with $IC_{50}$ at the concentration between 25 and $250 {\mu}M.$ Maprotiline, mianserin and amitriptyline inhibited 80 to 90% of the activities of all three PLC isozymes at the concentration of $250{\mu}M,$ while haloperidol and fluphenazine inhibited PLC ${\beta}_1$ and${\gamma}_1$ But baclofen didn't inhibit any PLC isozyme. These results suggested that PLC isozymes are inhibited by antipsychotics and antidepessants even though the concentration is high, and these drugs may affect PI signal transduction system by direct inhibition of PLC isozymes.

  • PDF

Distributional Patterns of Phospholipase C Isozymes in Heart and Brain of Spontaneously Hypertensive and Normotensive Rats

  • Choi, Ji-Woong;Cho, Young-Jin;Cha, Seok-Ho;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.385-392
    • /
    • 1997
  • The phospholipase C (PLC)-mediated intracellular signal transduction pathway is considered to be involved in the regulation of blood pressure. However, little information is available concerning the distributional and functional significance of PLC in the genetic hypertensive rats. As the first step of knowing the role of PLC on hypertension, we investigated the distribution of 6 PLC isozymes $(PLC-{\beta}1,\;-{\beta}3,\;-{\beta}4,\;-{\gamma}1,\;-{\gamma}2\;and\;-{\delta}1)$ in the heart and brain, which are concerned with hypertension, in the normotensive Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR) using the western blotting and immunocytochemistry. The immunoreactivities of PLC isozymes in brain were detected, but there were no distributional and quantitative differences between the WKY and SHR. In the heart, but the immunoreactivities to $PLC-{\beta}1$ and $-{\gamma}2$ in the SHR were higher than those in WKY. In immunocytochemistry to confirm these western blotting data, $PLC-{\beta}1$ and $-{\gamma}2$ were localized in cardiac myocytes and the intensities of immunoreactivity in SHR were stronger than that in WKY. These results suggest that $PLC-{\beta}1$ and $-{\gamma}2$ would have possibility to concern with the establishment of spontaneous hypertension.

  • PDF

Multiple roles of phosphoinositide-specific phospholipase C isozymes

  • Suh, Pann-Ghill;Park, Jae-Il;Manzoli, Lucia;Cocco, Lucio;Peak, Joanna C.;Katan, Matilda;Fukami, Kiyoko;Kataoka, Tohru;Yun, Sang-Uk;Ryu, Sung-Ho
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.415-434
    • /
    • 2008
  • Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-$\beta$, -$\gamma$, -$\delta$, -$\varepsilon$, -$\zeta$ and -$\eta$. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.

The Role of G protein in the Activation of Phospholipase C from Bovine Brain (소의 뇌조직 Phospholipase C의 활성화에 미치는 G-단백질의 역할)

  • Kim, Jung-Hye;Lee, Dong-Jin;Byun, Yeung-Ju
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.288-301
    • /
    • 1992
  • The objective of the present study was to identify the characteristics of phospholipase C (PLC) isozymes purified from bovine brain and to investigate their interrelationship with G protein. The purified PLC isozymes ${\beta}$, ${\gamma}$ and ${\delta}$ were obtained and the characteristics of PLC activity on various concentrations of free $Ca^{2+}$ were observed. The activity of PLC was increased with increasing $Ca^{2+}$ concentration and the activity PLC ${\delta}$ was increased higher in the presence of phosphatidyl choline(PC) than in the abscence of PC. For vesicle formation as the structure of cell membrane, cholic acid and deoxycholic acid as detergent on phosphatidylinositol bisphosphate($PIP_2$) substrate containing PC were used, and then the activity of PLC isozymes were increased with increasing concentration of cholate, from 0.2% to 1% and were increased slightly in deoxycholate. In the $PIP_2$ containing phospholipid and glycolipid as brain extract, the activity of PLC isozymes were checked in 0.2%-1% cholic acid. The activities of PLC isoyzmes were continuously increased up to 1% cholic acid. The quantitation of PLC isozymes from several bovine organs by radioimmunoassay was made. Brain was the most sufficient organ in terms of amount of PLC ${\beta}$and ${\delta}$. A large amount of PLC ${\delta}$ was existed in adrenal gland. The binding capacity of GTPrS and G protein was observed and other observations of the binding effect of GTPrS-G protein and PLC monoclonal Ab-Protein A from tissue homogenate with PLC were made. From the observation the binding capacity was revealed the range of 0.11%-1.49%. The effects of each type of G protein on the percent activity of purified PLC isozymes were observed. From the observation, activities of isozymes were increased in $Go{\alpha}$ & Gmix, and the activities of PLC ${\beta}$ and ${\delta}$ were increased in $G{\beta}{\gamma}$ and $Gi{\alpha}$. Activities of PLC ${\beta}$ and ${\gamma}$ were decreased in $Gt{\alpha}$ but PLC ${\delta}$ increased.

  • PDF

Expression of Phospholipase C Isozymes in Human Lung Cancer Tissues (인체 폐암조직에서 Phospholipase C 동위효소의 발현양상)

  • Hwang, Sung-Chul;Mah, Kyung-Ae;Choi, So-Yeon;Oh, Yoon-Jung;Choi, Young-In;Kim, Deog-Ki;Lee, Hyung-Noh;Choi, Young-Hwa;Park, Kwang-Ju;Lee, Yi-Hyeong;Lee, Kyi-Beom;Ha, Mahn-Joon;Bae, Yoon-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.310-322
    • /
    • 2000
  • Background : Phospholipase C(PLC) plays an important role in cellular signal transduction and is thought to be critical in cellular growth, differentiation and transformation of certain malignancies. Two second messengers produced from the enzymatic action of PLC are diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). These two second messengers are important in down stream signal activation of protein kinase C and intracellular calcium elevation. In addition, functional domains of the PLC isozymes, such as Src homology 2 (SH2) domain, Src homology 3 (SH3) domain, and pleckstrin homology (PH) domain play crucial roles in protein translocation, lipid membrane modificailon and intracellular memrane trafficking which occur during various mitogenic processes. We have previously reported the presence of PLC-${\gamma}1$, ${\gamma}2$, ${\beta}1$, ${\beta}3$, and ${\delta}1$ isozymes in normal human lung tissue and tyrosine-kinase-independent activation of phospholipase C-${\gamma}$ isozymes by tau protein and AHNAK. We had also found that the expression of AHNAK protein was markedly increased in various mstologic types of lung can∞r tissues as compared to the normallungs. However, the report concerning expression of various PLC isozymes in lung canærs and other lung diseases is lacking. Therefore, in this study we examined the expression of PLC isozymes in the paired surgical specimens taken from lung cancer patients. Methods : Surgically resected lung cancer tissue samples taken from thirty seven patients and their paired normal control lungs from the same patients, The expression of various PLC isozymes were studied. Western blot analysis of the tissue extracts for the PLC isozymes and immunohistochemistry was performed on typical samples for localization of the isozyme. Results : In 16 of 18 squamous cell carcinomas, the expression of PLC-${\gamma}1$ was increased. PLC-${\gamma}1$ was also found to be increased in all of 15 adenocarcinoma patients. In most of the non-small cell lung cancer tissues we had examined, expression of PLC-${\delta}1$ was decreased. However, the expression of PLC-${\delta}1$ was markedly increased in 3 adenocarcinomas and 3 squamous carcinomas. Although the numbers were small, in all 4 cases of small cell lung cancer tissues, the expression of PLC-${\delta}1$ was nearly absent. Conclusion : We found increased expression of PLC-${\gamma}1$ isozyme in lung cancer tissues. Results of this study, taken together with our earlier findings of AHNAK protein-a putative PLD-${\gamma}$, activator-over-expression, and the changes observed in PLC-${\delta}1$ in primary human lung cancers may provide a possible insight into the derranged calcium-inositol signaling pathways leading to the lung malignancies.

  • PDF

Homogeneity of Phospholipase C of Bovine Uterus and Seminal Vesicle Compared with Brain Isozymes (소의 자궁 및 고환에서 Phospholipase C의 분리 및 뇌 Isozyme과의 비교 연구)

  • Kim, Jung-Hye;Rhee, Sue-Goo;Lee, Ki-Yung
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.2
    • /
    • pp.37-45
    • /
    • 1988
  • Phosphoinositide-specific phospholipase C(PI-PLC) is a second messenger of signal transducer on cell membrane. In the previous study, PLC of bovine brain has been purified three isozymes. In this paper, uterus and seminal vesicle have been purified. Two peaks of PI-PLC activity were resolved when bovine uterus and seminal vesicle proteins were chromatographed on a DEAE and phenyl TSK 5PW HPLC column. Each two peak was compared with PI-PLC I, IT and ill from bovine brain and we got the retension time on HPLC. The peak fractions with PLC activity were tested homogeneity with brain PLC monoclonal antibodies(Mab). Mab-labeled affigels were bounded in the range of 73.8%~97.5% with PLC I, IT and III. Homogeneity of fractions were revealed that DEAE F-1 and phenyl F-1-I were highest level of PLC III in uterus and seminal vesicle and DEAE F-2 and phenyl F-2-I were mixed PLC I and II.

  • PDF

Decreased Expression of Phospholipase C-$\beta$2 in Human Platelets with Impaired Function

  • Lee, Sang-Bong;A. Koneti Rao;Lee, Kweon-Haeng;Xu Yang;Bae, Yun-Soo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.75-84
    • /
    • 1996
  • Platelets from a patient with a mild inherited bleeding disorder and abnormal platelet aggregation and secretion show reduced generation of inositol 1,4,5-trisphosphate (IP$_3$), mobilization of intracellular Ca$\^$2+/, and phosphorylation of pleckstrin in response to several G protein mediated agonists, suggesting a possible defect at the level of phospholipase C (PLC) activation. A procedure was developed that allows quantitation of platelet PLC isozymes. After fractionation of platelet extracts by high-performance liquid chromatography, seven, out often known PLC isoforms were detected by immunoblot analysis. The amount of these isoforms in normal platelets decreased in the order PLC-${\gamma}$2 > PLC-${\beta}$2 > PLC-${\beta}$3 > PLC-${\beta}$l > PLC-${\gamma}$ > PLC-$\delta$1 > PLC-${\beta}$4. Compared with normal platelets, platelets from the patient contained approximately one-third the amount of PLC-${\beta}$2, whereas PLC-${\beta}$4 was increased threefold. These results suggest that the impaired platelet function in the patient in response to multiple G protein mediated agonists is attributable to a deficiency of PLC-${\beta}$2. They document for the first time a specific PLC isozyme deficiency in human platelets and provide an unique opportunity to understand the role of different PLC isozymes in normal platelet function.

  • PDF

Regulation of Phosphoinositide-specific Phospholipase C-$\gamma$ Isozyme

  • Bae, Yun-Soo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.17-17
    • /
    • 1998
  • Although the activation mechanism of PLC-${\gamma}$ isozyme by protein tyrosine kinase (PTK) is well established, several lines of evidence indicate that PLC-${\gamma}$ isozymes can be activated directly by several lipid-derived second messengers In the absence of tyrosine phosphorylation.(omitted)

  • PDF

Cooperation of $G{\beta}$ and $G_{\alpha}q$ Protein in Contractile Response of Cat Lower Esophageal Sphincter (LES)

  • Sohn, Uy-Dong;Lee, Tai-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.349-355
    • /
    • 2003
  • We previously shown that LES contraction depends on $M_3$ receptors linked to PTX insensitive $G_q$ protein and activation of PLC. This results in production of $IP_3$, which mediates calcium release, and contraction through a CaM dependent pathway. In the esophagus ACh activates $M_2$ receptors linked to PTX sensitive $G_{i3}$ protein, resulting in activation of PLD, presumably, production of DAG. We investigated the role of PLC isozymes which can be activated by $G_q$ or $G{\beta}$ protein on ACh-induced contraction in LES and esophagus. Immunoblot analysis showed the presence of 3 types of PLC isozymes, $PLC-{\beta}1$, $PLC-{\beta}3$, and $PLC-{\gamma}1$, but not $PLC-{\beta}2$, $PLC-{\beta}4$, $PLC-{\gamma}2$, $PLC-{\delta}1$, and $PLC-{\delta}2$ from both LES and esophageal muscle. ACh produced contraction in a dose dependent manner in LES and esophageal muscle cells obtained by enzymatic digestion with collagenase. $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody incubation reduced contraction in response to ACh in LES but not in esophageal permeabilized cells, but $PLC-{\gamma}1$ antibody incubation did not have an inhibitory effect. The inhibition by $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody on Ach-induced contraction was antibody concentration dependent. The combination with $PLC-{\beta}_1$ and $PLC-{\beta}_3$ antibody completely abolished the contraction, suggesting that $PLC-{\beta}1$ and $PLC-{\beta}3$ have a synergism to inhibit the contraction in LES. $PLC-{\beta}1$, -${\beta}3$ or -${\gamma}1$ antibody did not reduce the contraction of LES cells in response to DAG ($10^{-6}$ M), suggesting that this isozyme of PLC may not activate PKC. When $G_{q/11}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}3$, but not of PLC ${\beta}_1$ was additive (Fig. 6). In contrast, when $G_{\beta}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}_1$, but not of PLC ${\beta}_3$ was additive. This data suggest that $G_{q/11}$/11 or $G{\beta}$ may activate cooperatively different PLC isozyme, $PLC{\beta}_1$ or $PLC{\beta}_3$ respectively.

Biochemical Characterization of Phospholipase C$\delta$from liver of Mud loach (Misgurnus mizolepis) (미꾸라지 간으로부터 포스포리파아제 C델타 단백질의 생화학적 특성)

  • Seo, Jung-Soo;Lim, Sang-Uk;Kim, Na-Young;Lee, Sang-Hwan;Oh, Hyun-Suk;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.18 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • Phosphoinositide-specific phospholipase $C\delta$ $PLC\delta$) plays an important role in many cellular responses and is involved in the production of second messenger. The present study was conducted to obtain the biochemical characteristics of the expressed recombinant $PLC\delta$ in E. coli cloned from Misgurnus mizolepis and partially purified $PLC\delta$ enzymes from liver tissues of M. mizolepis (wild ML-$PLC\delta$). The ML $PLC\delta$ gene was cloned and expressed under the previous report (Kim et al., 2004), and purified the recombinant protein by successive chromatography using $Ni^{2+}$-NTA affinity column and gel iltration FPLC column. The wild ML-$PLC\delta$ protein was solublized with 2 M KCI and purified by successive chromatography on open heparin-Sephagel and analytical TSKgel heparin-5PW. Both the recombinant and wild ML-$PLC\delta$ form of protein showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bis-phosphate (PIP$_2$) or phosphatidylinositol (PI). Its activity was absolutely $Ca^{2+}$- dependant, which was similar to mammalian $PLC\delta$ isozymes. Maximal PI-hydrolytic activations of recombinant and wild ML- TEX>$PLC\delta$ was at pH 7.0 and pH 7.5, respectively. In addition, the enzymatic activities of recombinant and wild ML-$PLC\delta$ were increased in concentration-dependent manner by detergent, such as sodium deoxycholate SDC), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The activities decreased in contrast by a polyamine, such as spermine. Western blotting showed that several types of $PLC\delta$ isozymes exist in various organs. Taken together our results, it suggested that the biochemical characteristics of ML-$PLC\delta$ are similar with those of mammalian $PLC\delta1$ and ${\delta}3$ isozymes.