• Title/Summary/Keyword: PLASMA

Search Result 17,076, Processing Time 0.044 seconds

On the Possibility of Multiple ICP and Helicon Plasma for Large-area Processes

  • Lee, J.W.;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.1-234.1
    • /
    • 2014
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance[ECR], Inductively Coupled Plasma[ICP], Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. Among them, Some researchers have been studied on multiple sources In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP), and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple source for large-area processes.

  • PDF

The Effects of O2 Plasma Treatment on Electrical Properties of Graphene Grown by Chemical Vapor Deposition

  • Kim, Yun-Hyeong;Park, Jin-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.384.2-384.2
    • /
    • 2014
  • We investigated the electrical and structural properties of chemical vapor deposition (CVD)-grown graphene and post treated by O2 plasma. For the patterning of graphene, the plasma technology is generally used and essential for etching of graphene. But, the cautious O2 plasma treatments are required to avoid the damage in graphene edge which can be the harmful effects on the device performance. To analyze the effects of plasma treatment on structural properties of graphene, the change of surface morphology of graphene are measured by scanning electron microscope and atomic force microscope before and after plasma treatment. In addition, the binding energy of carbon and oxygen are measured through to X-ray photoelectron spectroscopy. After plasma treatment, the severe changes of surface morphology and binding energy of carbon and oxygen were observed which effects on the change of sheet resistance. Finally, to analyze of graphene characteristics, we measured the Raman spectroscopy. The measured results showed that the plasma treatment makes the upward of D-peak and downward of G'-peak by elevated power of plasma.

  • PDF

Effect of Plasma Modification of Woven type Carbon Fibers on the Wear Behavior of Carbon Fiber/Epoxy Composites (평직 탄소섬유의 플라즈마 처리 및 이에 따른 탄소섬유/에폭시 복합재의 마모 특성)

  • Lee, Jae-Seok;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.113-118
    • /
    • 2010
  • For a present study, woven type carbon fibers were surface-modified by oxygen plasma to improve adhesive strength between carbon fibers and epoxy. The change of hydrophilic properties by the plasma modification was investigated through the contact angle measurement and the calculation of surface energy of carbon fiber due to the oxygen plasma modification. FESEM and XPS analyses were performed to study the chemical and physical changes on the surface of carbon fibers due to the oxygen plasma modification. Pin-on-disk wear tests were conducted under dry condition using unmodified and plasma-modified carbon/epoxy composites to investigate the effect of plasma modification on the wear behavior of woven type carbon/epoxy composites. The results showed that the friction coefficient and the wear rate of plasma-modified carbon/epoxy composites were lower than those of unmodified carbon/epoxy composites, respectively. XPS analysis showed that new functional group of a carbonyl type was created on the carbon fibers by the $O_2$ plasma treatment, which enhanced adhesive strength between carbon fibers and epoxy, leading to improve wear properties

Effects of the Sheath on Determination of the Plasma Density of Microwave Probe

  • Kim, Dae-Woong;You, Shin-Jae;Na, Byung-Keun;You, Kwang-Ho;Kim, Jung-Hyung;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.181-181
    • /
    • 2012
  • The microwave probe for measuring plasma density is widely used for its advantages: First, it is not affected by the reactive gas. Second, it can measure local plasma parameters such as plasma density, plasma potential and plasma temperature. Third, it is simple and robust. A cut-off probe is the one of the most promising microwave probe. Recently, Kim et al. reveals the physics of the cut-off probe but the effect of the sheath on the determination of the plasma density is not explained. In this presentation, for taking account of sheath effects on determination of plasma density from the cut-off peak, a simplified circuit modeling and an E/M simulation are conducted. The results show that occupation ratio of sheath volume between two tips of the cut-off probe and subsequence pressure condition mainly change position of the cut-off peak with respect to plasma frequency. Magnitude of relative voltage taken on the impedance of sheath and the impedance of bulk plasma can explain this effect. Furthermore, effects of gap size, tip radius, and tip length ware revealed based on above analysis.

  • PDF

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Development of Steam Plasma-Enhanced Coal Gasifier and Future Plan for Poly-Generation

  • Hong, Yong-Cheol;Lho, Taihyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.3
    • /
    • pp.139-144
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Finally, we briefly report treatment of soils contaminated with oils, volatile organic compounds, heavy metals, etc., which is an underway research in our group.

Weldability Evaluation in Plasma-GMA Hybrid Welding for Al-5083 Using Analysis of Variance (AL5083 합금에 대한 Plasma-GMA 용접에서 분산분석을 이용한 공정변수의 특성 평가)

  • Jung, Jin Soo;Lee, Jong Jung;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • In this paper, I-butt welding with 6mm thickness using Plasma-GMA welding was carried out. And weld characteristics of the Al-5083 aluminium alloy for Plasma-GMA hybrid welding was evaluated. The orthogonal experimental design was used to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the weld bead geometry and tensile strength using the ANOVA(Analysis of Variation). Then we conducted evaluation of contribution for process parameters. ANOVA results show that bead dimensions are affected by wire feeding speed, welding voltage and welding speed and tensile strength is mainly affected by welding speed and plasma arc current. Tensile strength was decreased by rise in plasma welding current because GMA welding current was decreased by plasma arc.

Mass constraint and temperature estimation of eruptive plasma in X-ray

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Moon, Yong-Jae;Kim, Kap-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.60.2-60.2
    • /
    • 2013
  • We investigate several eruptive hot plasma observations by Hinode/XRT. Their corresponding EUV and/or white light CME features are visible in some events. Using those observations, we determine the mass constraints of eruptive plasma by assuming simplified geometrical structures of the plasma. In some events, their associated prominence eruptions and eruptive plasma were observed in EUV observations as absorption or emission features. The absorption feature provides the lower limit to the cold mass while the emission feature provides the upper limit to the mass of observed eruptive plasma in X-ray and EUV passbands. We compare the mass constraints for each temperature responses and find that the mass in EUV and XRT are smaller in their upper or lower limit than total mass in coronagraph. About half eruptive events in XRT have no corresponding CME, which may be due to failed eruptions or low plasma density. In addition, some events were observed by a few passbands in X-ray, which allows the determination of the eruptive plasma temperature using a filter ratio method. We present the isothermal plasma temperatures by the filter ratio method. These are possibly an average temperature for higher temperature plasma because the XRT is more sensitive in higher temperature.

  • PDF

Non-thermal plasma technology for abatement of pollutant emission from marine diesel engine

  • Panomsuwan, Gasidit;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.929-934
    • /
    • 2016
  • Plasma technology has long been regarded as a key essential tool in many industrial and technological sectors. However, the advancement of plasma technology in marine applications has not been fully realized yet. Herein, we present a short overview on the recent trends in utilization of plasma technology for air-pollution treatment in marine diesel exhaust. Four non-thermal plasma system, including electron beam dry scrubber (EBDS), dielectric barrier discharge (DBD), electron beam-microwave (EB-MW) plasma hybrid system, and plasma-catalytic hybrid system, are described with emphasis on their efficiency in removals of $NO_x$ and $SO_x$ gases. Non-thermal plasma has the great potential to be an efficient and environmentally compatible technique in simultaneous removals of $NO_x$ and $SO_x$ gases from the exhaust of marine diesel engine in the future.