• Title/Summary/Keyword: PLAC8

Search Result 5, Processing Time 0.019 seconds

Mapping of Gene Encoding Phospho-$\beta$-galactosidase from Lactobacillus casei and its Expression in Escherichea coli (Lactobacillus casei 의 Phospho-$\beta$-galactosidase 유전자의 지도작성과 Escherichia coli 내에서의 발현)

  • 박정희;문경희;민경희
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.539-545
    • /
    • 1992
  • Recombinant plasmid pPLac15 determined both phosphoenolpyruvate-dependent phosphotransferase uptake of lactose and phospho-$\beta$-galactosidase (Moon et al., 1989). A restriction mapping of the pPLac15 was compiled with several restriction enzymes and a seriese of sub clones into pUC18 was constructed. From an analysis of the proteins produced by Escherichia coli cells of transformants containing each of the recombinant subclone plasmids, it was found that the gene for phospho-$\beta$-galactosidase in pUCI8 was expressed about 1.8-folds in E. coli.

  • PDF

CRISPR/Cas9-mediated generation of a Plac8 knockout mouse model

  • Lee, HyunJeong;Kim, Joo-Il;Park, Jin-Sung;Roh, Jae-il;Lee, Jaehoon;Kang, Byeong-Cheol;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.279-287
    • /
    • 2018
  • Placenta specific 8 (PLAC8, also known as ONZIN) is a multi-functional protein that is highly expressed in the intestine, lung, spleen, and innate immune cells, and is involved in various diseases, including cancers, obesity, and innate immune deficiency. Here, we generated a Plac8 knockout mouse using the CRISPR/Cas9 system. The Cas9 mRNA and two single guide RNAs targeting a region near the translation start codon at Plac8 exon 2 were microinjected into mouse zygotes. This successfully eliminated the conventional translation start site, as confirmed by Sanger sequencing and PCR genotyping analysis. Unlike the previous Plac8 deficient models displaying increased adipose tissue and body weights, our male Plac8 knockout mice showed rather lower body weight than sex-matched littermate controls, though the only difference between these two mouse models is genetic context. Differently from the previously constructed embryonic stem cell-derived Plac8 knockout mouse that contains a neomycin resistance cassette, this knockout mouse model is free from a negative selection marker or other external insertions, which will be useful in future studies aimed at elucidating the multi-functional and physiological roles of PLAC8 in various diseases, without interference from exogenous foreign DNA.

Phospho-$\beta$-galactosidase gene located on plasmid in lactobacillus casei (플라스미드에 존재하는 lactobacillus casei의 phospho-$\beta$-galactosidases 유전자)

  • 문경희;박정희;최순영;이유미;김태한;하영칠;민경희
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.181-187
    • /
    • 1989
  • Plasmid DNA was isolated from Lactobacillus casei SW-M1($Lac^{+}$strain). The curing frequencies of pPLac plasmid from L. casei SW-M1 showed 43% for acriflavin treatment and 53% for ethidium bromide treatment after 3 times transfer. On the charaterization of pPLac plasmid, it was found that the plasmid contained gene encoding phospho-$\beta$-galactosidase for lactose utilization. Lactose-PTS(phosphotransferase system)was involved in membrane transport system in $Lac^{+}$ strain. Induction of phospho-$\beta$-galactosidase was specially effective by galactose, lower effect with lactose and glucose but not by IPTG(isopropyl-$\beta$-D-thiogalactoside). This result showed that induction of phospho-$\beta$-galactosidase by IPTG did not appeared. The catabolite repression of phospho-$\beta$-galactosidase synthesis by glucose was not found in L. casei.

  • PDF

Identification of Genes for Growth with Oxygen in Escherichia coli by Operon Fusion and Southern Blot Techniques

  • Kim, Il-Man;Lee, Yong-Chan;Won, Jae-Seon;Choe, Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.976-983
    • /
    • 2003
  • Seven Escherichia coli cells defective with aerobic growth were isolated by the insertion of ${\lambda}placMu53$, a hybrid bacteriophage of ${\lambda}$ and Mu, which created a transcriptional fusion to lacZY. These insertion mutant cells were tested on an XG ($5-bromo-4-chloro-3-indolyl-{\beta}-D-galactopyranoside$) medium for anaerobic expression of lacZ by fusion to a promoter. The chromosomal DNA from these strains were digested by EcoRI, and the EcoRI fragments that contained the fused gene and lacZ sequence were identified by Southern hybridization, using lacZ containing plasmid as a probe. The EcoRI fragment from each strain was cloned and sequenced. The sequence data were compared with the GenBank database. The mutated gene of three strains, CYT4, CYT5, and OS11, was found to be identical, and it was nrdAB that encoded ribonucleoside diphosphate reductase. The gene nrdAB was at min 50.5 on the Escherichia coli linkage map and 2,348,084 on the physical map, and is involved in hemAe-related reduction-oxidation reaction. OS6 and OS14 mutant strains had insertion at min 8.3 and the mutated gene was hemB. The hemB encodes 5-aminolevulinate dehydratase or porphobilinogen synthase. The OS3 mutant had insertion in cydB at min 16.6. The cydAB encodes cytochrome d oxidase. In the case of OS1, the fusion was made with sucA, the E1 component of ${\alpha}-ketoglutarate$ dehydrogenase.

Microbial production of carotenoids for fortification of foods

  • Kim, Seon-Won;Keasling, J.D.
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2001.11a
    • /
    • pp.3-8
    • /
    • 2001
  • Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all carotenoids, IPP in Escherichia coli is synthesized through the non-mevalonate pathway. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phosphate, catalyzed by DXP reductoisomerase and encoded by dxr. To determine if one or more of the reactions in the non-mevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains (DH5(, XL1-Blue, and JM101) that had been engineered to produce lycopene. Lycopene production was improved significantly in strains transformed with the dxs expression vectors. When the dxs gene was expressed from the arabinose-inducible araBAD promoter (PBAD) on a medium-copy plasmid, lycopene production was 2-fold higher than when dxs was expressed from the IPTG-inducible trc and lac promoters (Ptrc and Plac, respectively) on medium-copy and high-copy plasmids, Given the low final densities of cells expressing dxs from IPTG-inducible promoters, the low lycopene production was probably due to the metabolic burden of plasmid maintenance and an excessive drain of central metabolic intermediates. At arabinose concentrations between 0 and 1.33 mM, cells expressing both dxs and dxr from PBAD on a medium-copy plasmid produced 1.4 - 2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cells expressing both dxs and dxr was lower than in cells expressing dxs only. A comparison of the three E. coli strains transformed with the arabinose-inducible dxs on a medium-copy plamid revealed that lycopene production was highest in XL1-Blue.

  • PDF