• Title/Summary/Keyword: PLA polymer

Search Result 144, Processing Time 0.035 seconds

Polymerization of L-Lactic Acid through Direct Polycondensation

  • Achmad, Feerzet;Ken, Seki;Kawano, Yuki;Kokugan, Takao
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.331-331
    • /
    • 2006
  • Polylactic acid (PLA) is a promising polymer because it can be derived from renewable resources and provides a biodegradable alternative to petrochemical based polymers. This research aims to synthesize PLA, through direct polycondensation and also tries to avoid the occurrence of separation by-product and the use of catalysts in the process. The polymerization of lactic acid was done at three different temperatures $150^{\circ}C,\;180^{\circ}C\;and\;200^{\circ}C$ for 90 h without catalysts and organic solvent. The proposed process provides results that are comparable to those that incorporate catalysts; during polymerization temperature was $180^{\circ}C$ the molecular weight of PLA obtained reached 42448 Da. The thermal properties of PLA analysis by Differential Scanning Calorimetry (DSC).

  • PDF

Crystallization Behavior of Poly(lactic acid) / Poly($\varepsilon$-caprolactone) Blends (폴리락트산/폴리카프로락톤 블렌드의 결정화 거동)

  • 이종록;천상욱;강호종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.285-292
    • /
    • 2003
  • The compatibility of poly(lactic acid)/poly($\varepsilon$-caprolactone) (PLA/PCL) blends as a function of blend composition was studied and triphenyl phosphite (TPP) was applied to PLA/PCL blends as a reactive compatibilizer. Especially the effect of compatibility on the crystallization behavior in both PLA/PCL blends and PLA/PCL blends with TPP was considered. PLA/PCL blends were immiscible based on thermal characteristics of PLA/PCL blends and the miscibility was depend upon the blend composition. The enhancement of compatibility was found in PLA/PCL blends with TPP depend upon its content. The rate of crystallization in PLA/PCL blend varied with blend composition. This was understood as the development of nucleation at the interface of PLA-PCL due to the immiscibility. TPP was acting as a compatibilizer as well as an agent for the acceleration of spherulite growth In PLA. As a result, the crystallization rate increased and the size of spherulite became larger than that of PLA/PCL blend without TPP.

Effects of Irradiation of Electron Beam on the Rheological Properties of Poly(lactic acid) and Chemically Modified Poly(lactic acid) (전자선 조사가 Poly(lactic acid) 및 개질된 Poly(lactic acid)의 유변학적 특성에 미치는 영향)

  • Shin, Boo-Young;Kang, Kyoung-Su;Jo, Gyu-Soon;Han, Do-Hung;Song, Jeong-Sup;Lee, Sang-Il;Lee, Tae-Jin;Kim, Bong-Shik
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.269-272
    • /
    • 2007
  • In this study, we investigated the effects of electron beam irradiation on the rheological properties of PLA for enhancing processability. The electron beam was irradiated onto the pure PLA, chemically modified PLA by reactive extrusion, and PLA containing functional monomer. The complex viscosity and log G'vs. log G" plot among dynamic rheological properties were chosen for comparison. The complex viscosity of irradiated pure and chemically modified PLA decreased significantly due to de-gradation of PLA molecules with increasing the E-beam dosages. Complex viscosity of irradiated PLA with functional monomer showed maximum value at moderate dosage, while at high dosage the complex viscosity was decreased by a prolonged irradiation.

Microstructure, Thermal Properties and Rheological Behavior of PLA/PCL Blends for Melt-blown Nonwovens (멜트블론 부직포 제조를 위한 PLA/PCL 블렌드의 미세구조, 열적특성, 및 유변학적 성질)

  • Sun, Hui;Yu, Bin;Han, Jan;Kong, Jinjin;Meng, Lingrui;Zhu, Feichao
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.477-483
    • /
    • 2014
  • Poly(lactic acid) (PLA) and poly(${\varepsilon}$-caprolactone) (PCL) blends with various components for melt-blown non-wovens were prepared by a twin-screw extruder. Tributyl citrate (TBC) was added in order to improve the miscibility between PLA and PCL. The results showed that small circular particles of PCL were dispersed in PLA matrix uniformly. The addition of PCL had the heterogeneous nucleation effect on the crystallization of PLA and decreased thermal stability of PLA. The flow of pure PLA and blends approached to Newtonian liquid at a low shear rate and expressed more obvious viscoelasticity at a high shear rate.

Study on Properties of Eco-friendly Pot with Biodegradable PLA/PBAT Blend Film (생분해성 PLA-PBAT 블렌드 필름을 이용한 친환경 포트의 특성 연구)

  • Park, Han-saem;Song, Kang-yeop;Kang, Jae-ryeon;Seo, Wonjun;Lee, SeonJu;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1037-1043
    • /
    • 2015
  • Since single-use disposable plastic usage has steadily been increasing, recent trends in polymeric research point to increasing demand for eco-friend materials which reduce plastic waste. A huge amount of non-degradable polypropylene (PP)-based pots for seedling culture are discarded for transplantation. The purpose of this study is to investigate an eco-friendly biodegradable material as a possible substitute for PP pot. The blend of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT) was used because of its good mechanical and flexible properties as well as biodegradation. After landfill, various properties of the blend pot were investigated by UTM, SEM, NMR and TGA. The results showed the tensile strength of the blend film rapidly decreased after 5 weeks of landfill due to degradation. From NMR data after landfill, the composition of PLA in the blend was decreased. These results indicate that the biodegradation of the blend preferentially occurs in PLA component. To investigate the effect of holes in pot bottom and side on root growth, a plant in the pot was grown. Some roots came out through holes as landfill period increases. These results indicate that the eco-friendly pot can be directly planted without the removal of pot.

Rheological Properties of Poly(lactic acid) Modified by Electron Beam Irradiation (전자선 조사로 개질된 PLA의 유변학적 물성)

  • Shin, Boo-Young;Kim, Bong-Shik
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.485-489
    • /
    • 2010
  • Poly(lactic acid)(PLA) has been modified by electron radiation in the presence of 5 phr glycidyl methacrylate (GMA) to enhance the melt strength of PLA. The modified PLA was prepared by varying the dose of irradiation and was characterized by observing the thermal properties, the melt viscoelastic properties and the gel fraction. The irradiated PLA with 300 kGy in the presence of 5 phr GMA showed drastically improved complex viscosity and storage modulus properties: a complex viscosity of about 210 times higher and a storage modulus of 14500 times higher than those of virgin PLA when measured at a frequency of 0.1 rad/s. Gel fraction study revealed that a branching reaction was more dominant than a crosslinking reaction when the PLA was irradiated with less than 200 kGy.

Synthesis and Characterization of Poly(L-lactide)(L-PLA), Poly(D-lactide)(D-PLA) and Stereocomplex-poly(lactide)(PLA) (L-폴리락타이드, D-폴리락타이드의 활성과 입체복합체 폴리락타이드의 제조 및 특성연구)

  • Kim, Ji-Hyun;JeGal, Jong-Geon;Song, Bong-Keun;Shin, Chae-Ho
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • L-PLA or D-PLA was synthesized in bulk at $140^{\circ}C$ by ring opening polymerization(ROP) of L-lactide or D-lactide as a monomer using tin(II) octoate and lauryl alcohol as a catalyst and an initiator with changing the amounts of catalyst(0.25~1.0 wt%) and initiator(0.l~0.5 wt%). And stereocomplex-PLA was prepared by L-PLA/D-PLA having a wide range of molecular weight(30000~90000 g/mol) and L-PLA/D-PLA blends having different mixing ratio ($X_D$). The melting temperature. thermal degradation temperature and thermal stability of stereocomplex-PLA were higher than those of homopolymers(L-PLA, D-PLA). We supposed that these improvements arose from a strong interaction between L-PLA and D-PLA. The improved mechanical properties and changes in morphology of LPLA/D-PLA blends were compared to those of homopolymers(L-PLA, D-PLA).

Processing and Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Poly(butylene succinate) Blends (폴리유산/폴리부틸렌숙시네이트 블랜드의 가공 및 기계적, 열적, 형태학적 특성)

  • Kim, Dae Keun;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • In the present work, PLA/PBS blends with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) at different contents were processed by using a twin-screw extruder and an injection molding machine, and then their mechanical, thermal and morphological properties were investigated. The mechanical properties such as flexural strength, flexural modulus, tensile strength and tensile modulus and thermal properties such as melting behavior, dynamic mechanical thermal properties and thermal stability significantly depended on the contents of PLA and PBS. However, the heat deflection temperature of the blends was not significantly influenced by the contents of PLA and PBS. Also, the fracture surfaces of PLA/PBS blends were changed from a brittle pattern to a ductile pattern with increasing the PBS contents.

Scale-Up of Polymerization Process of Biodegradable Polymer Poly(lactic acid) Synthesis Using Direct Polycondensation Method

  • Pivsa-Art, Sommai;Niamlang, Sumonman;Pivsa-Art, Weraporn;Santipatee, Nutchapon;Wongborh, Tossamon;Pavasupree, Sorapong;Ishimoto, Kiyoaki;Ohara, Hitomi
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.100-109
    • /
    • 2015
  • Environmental problems from petroleum-based plastic wastes have been rapidly increasing in recent years. The alternative solution is focus on the development of environmental friendly plastic derived from renewable resource. Poly(lactic acid) (PLA) is a biodegradable polymer synthesized from biomass having potential to replace the petroleum-based non-degradable polymers utilizations. PLA can be synthesized by two methods: (1) ring-opening of lactide intermediate and (2) direct polycondensation of lactic acid processes. The latter process has advantages on high yields and high purity of polymer products, materials handling and ease of process treatments. The polymerization process of PLA synthesis has been widely studied in a laboratory scale. However, the mass scale production using direct polycondensation of lactic acid has not been reported. We have investigated the kinetics and scale-up process of direct polycondensation method to produce PLA in a pilot scale. The order of reaction is 2 and activation energy of lactic acid to lactic acid oligomers is 61.58 kJ/mol. The pre-polymer was further polymerized in a solid state polymerization (SSP) process. The synthesized PLA from both the laboratory and pilot scales show the comparable properties such as melting temperature and molecular weight. The appearance of synthesized PLA is yellow-white solid powder.

Effect of High-molecular-weight Maleic Anhydride-grafted Polylactic Acid Compatibilizer on the Properties of Polylactic acid-based Wood Polymer Composites (말레산 무수물로 그래프트된 고분자량의 폴리락트산 상용화제가 폴리락트산 기반의 합성목재에 미치는 영향)

  • Han, Dong-Heon;Lee, Jong In;Oh, Seung-Ju;Nam, Byeong Uk;Bae, Jin Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.275-282
    • /
    • 2021
  • High-molecular-weight maleic anhydride-grafted polylactic acids (HMMA-g-PLA) compatibilizers were prepared by melt grafting in a twin screw extruder using di(tert-butyl-perxoyisopropyl)benzene (PK-14; as initiator), maleic anhydride (MA), and divinylbenzene (DVB). To determine the properties of the prepared HMMA-g-PLA compatibilizers, Fourier transform infrared (FTIR), Melt index (MI), and back-titration analyses were performed. On increasing DVB concentration, grafting yield of HMMA-g-PLA increased but MI decreased because 𝛽-scission of PLA was restrained by the DVB, and thus, the molecular weight of HMMA-g-PLA increased. PLA-based wood-plastic composites (WPCs) were prepared using HMMA-g-PLA by melt blending through a single screw extruder. The flexural and impact strengths of WPCs compatibilized with HMMA-g-PLA were greater than those of WPCs produced without HMMA-g-PLA. Scanning electron microscope (SEM) studies indicated that increased mechanical properties were caused by excellent interfacial adhesion between PLA and wood fibers due to the addition of HMMA-g-PLA. However, rather high contents of HMMA-g-PLA reduced the mechanical properties of WPCs. We believe that lower molecular-weight of HMMA-g-PLA added as an compatibilizer, compared with PLA polymer, caused the reduction of mechanical properties.