• Title/Summary/Keyword: PLA polymer

Search Result 144, Processing Time 0.024 seconds

Systematic studies on the properties of poly(lactic acid) (PLA)/liquid polybutadiene rubber (LPB) reactive blends

  • Lim, Sung-Wook;Choi, Myeon-Cheon;Jeong, Jae-Hoon;Park, Eun-Young;Ha, Chang-Sik
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.149-162
    • /
    • 2018
  • Following our previous work, we have conducted further systematic studies to investigate the effects of reactive blending on the thermal and mechanical properties of blends of poly(lactic acid) (PLA) and a liquid rubber, polybutadiene (LPB). The toughened PLAs were prepared by melt-blending the PLA with various contents (0-9 wt.%) of the LPB in the absence or presence of dicumyl peroxide (DCP), a radical initiator. It was found that the rubber domains were homogeneously dispersed at the nanoscale in the PLA matrix up to 9 wt.% of LPB thanks to the reactive blending in the presence of DCP. Owing to the compatibilization of PLA with LPB through reactive blending, the elongation and toughness of PLA was enhanced, while the hydrolytic degradation of PLA was reduced.

Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms

  • Kim, Mi Yeon;Kim, Changman;Moon, Jungheun;Heo, Jinhee;Jung, Sokhee P.;Kim, Jung Rae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.342-349
    • /
    • 2017
  • Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Pioglitazone (Pioglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Im, Jeong-Hyuk;Lee, Yong-Kyu;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • We synthesized PEG-PLA (or PLGA) amphiphilic di-block copolymers, which consist of PEG as biocompatible and hydrophilic block and PLA (or PLGA) as biodegradable and hydrophobic block, by ring opening polymerization of LA in the presence of methoxy PEG as a macroinitiator. The compositions and the molecular weights of the copolymers were controlled by changing the feed ratio of LA (and GA) to PEG initiator. The di-block copolymers could self-assemble in aqueous media to form micellar structure. A hydrophobic model drug, pioglitazone, was loaded into the polymer micelle using solid dispersion and dialysis methods, and the drug-loaded micelles were characterized by AFM, DLS and HPLC measurements. The drug loading capacity and in vitro release studies were performed and evaluated under various conditions. These results indicated that the amphiphilic di-block copolymers of PEG-PLA (or PLGA) could solubilize pioglitazone by solid dispersion method and the drug release was modulated according to micellar chemical compositions.

Preparation and Characterization of Biomass-based Polymer Blend Films (Biomass-based 고분자 블렌드필름의 제조 및 특성 연구)

  • Lee, Soo;Jin, Seok-Hwan;Lee, Jae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • To manufacture of a completely biodegradable and compostable biomass -based blend polymer film, two types of cellulose acetates(DS=2.4 and DS=2.7) were blended with 5 - 50 wt% of low average molecular weight polylactide(PLA) by mixing each polymer solution having same viscosity in 10 wt% methanol/dichloromethane. Their surface morphology, thermal and mechanical properties were studied. The chemical structures of blend films were confirmed by the fourier transform IR spectroscopy with attenuated total reflection(FT-IR ATR) spectrophotometer. Scanning electron microscope(SEM) photos of blend films of both CAs with less than 5 % of PLA showed homogeneous morphology. On the contrary, the other blends with higher than 20 wt% of PLA content showed a large phase separation with spherical domains. The thermal property of blend films was also analyzed with thermogravimetric analysis(TGA) and differential scanning calorimeter(DSC). The tensile strength of CA/PLA blend films was increased up to $820kg_f/cm^2$ for TAC/PLA and $600kg_f/cm^2$ for DAC/PLA.

Fabrication and Characterization of Environmentally Friendly PLA/PPC/PLA Multilayer Film (친환경 PLA/PPC/PLA 적층필름의 제조 및 특성 연구)

  • Lee, Deuk-Young;Kim, Kyung-Youn;Cho, Misuk;Nam, Jaedo;Lee, Youngkwan
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.249-253
    • /
    • 2013
  • From poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) synthesized using $CO_2$, a PLA/PPC/PLA layered film is prepared by coextrusion and then stretched to uniaxial orientation. The mechanical, optical, and barrier properties and shrinkage of the prepared film were investigated in detail. The maximum shrinkage of PLA/PPC/PLA film reached to 60% at $75^{\circ}C$. With increasing PPC content, the ratio of shrinkage of the film was increased and its shrinkagerate was increased. The ratio of shrinkage of the film decreased with increasing stretching temperature. The prepared film has oxygen and vapor transmission barrier properties. In this study, the PLA/PPC/PLA film is expected to be commercialized as a environmentally friendly shrinkable film.

Preparation and Characterization of Demineralized Bone Particle Impregnated Poly(L-lactide) Scaffolds

  • Gilson Khang;Park, Chong-Soo;John M. Rhee;Lee, Sang-Jin;Lee, Young-Moo;Park, Myoung-Kyu;Lee, Hai-Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.267-276
    • /
    • 2001
  • In order to endow with new bioactive functionality from demineralized bone particle (DBP) as natural source to poly(L-lactide) (PLA) synthetic biodegradable polymer, porous DBP/PLA as natural/synthetic composite scaffolds were prepared and compared by means of the emulsion freeze drying and solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. For the emulsion freeze drying method, it was observed that the pore size decreased in the order of 79$\mu\textrm{m}$ (PLA control) > 47$\mu\textrm{m}$ (20% of DBP) > 23 $\mu\textrm{m}$ (40% of DBP) > 15$\mu\textrm{m}$ (80% of DBP). Porosities as well as specific pore areas decreased with increasing the amount of DBR. It can be explained that DBP acts like emulsifier resulting in stabilizing water droplet in emulsion. For the solvent casting/salt leaching method, a uniform distribution of well interconnected pores from the surface to core region were observed the pore size of 80 ∼70 $\mu\textrm{m}$ independent with DBP amount. Porosities as well as specific pore areas also were almost same. For pore size distribution by the mercury intrusion porosimeter analysis between the two methods, the pore size distribution of the emulsion freeze drying method was broader than that of the solvent casting/salt leaching method due to the mechanism of emulsion formation. Scaffolds of PLA alone, DBP/PLA of 40 and 80%, and DBP powder were implanted on the back of athymic nude mouse to observe the effect of DBP on the induction of cells proliferation by hematoxylin and eosin staining for 8 weeks. It was observed that the effect of DBP/PLA scaffolds on bone induction are stronger than PLA scaffolds, even though the bone induction effect of DBP/PLA scaffold might be lowered than only DBP powder, that is to say, in the order of DBP only > DBP/PLA scaffolds of 40 and 80% DBP > PLA scaffolds only for osteoinduction activity. In conclusion, it seems that DBP plays an important role for bone induction in DBP/PLA scaffolds for the application of tissue engineering area.

  • PDF

Properties, Structure and Crystallization of Poly Lactic Acid/Zinc Oxide Pillared Organic Saponite Nanocomposites (폴리락틱산/산화아연 기둥구조의 유기사포나이트 나노복합체의 특성, 구조 및 결정화)

  • Zhen, Weijun;Sun, Jinlu
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.299-306
    • /
    • 2014
  • ZnO pillared saponite was synthesized via a microwave hydrolysis method. To enhance interfacial compatibility between zinc oxide (ZnO) pillared saponite and poly lactic acid (PLA), ZnO pillared organic saponite was prepared by intercalation modification of cetyltrimethylammonium bromide. Moreover, PLA/ZnO pillared organic saponite nanocomposites were prepared by melting processing. The microstructure analysis of PLA/ZnO pillared organic saponite nanocomposites showed that ZnO pillared organic saponite was exfoliated and homogeneouslydispersed in PLA matrix. The property results showed that ZnO pillared organic saponite improved the mechanical properties and thermal stabilities of PLA/ZnO pillared organic saponite nanocomposites. Differential scanning calorimetry (DSC) demonstrated that ZnO pillared organic saponite restrained the appearance of cold crystallization, lowered the glass transition temperature and melting temperature of PLA, and improved the crystallinity of PLA. The results demonstrated that ZnO pillared organic saponite had a good interfacial compatibility and heterogeneous nucleation effect in PLA matrix, and also played an active role in accelerating the crystallization process of PLA.

Growth of Monolayered Poly(l-lactide) Lamellar Crystals on a Substrate

  • Lee, Won-Ki;Lee, Jin-Kook;Ha, Chang-Sik
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.511-513
    • /
    • 2003
  • Hydroxyl groups were introduced onto the surface of a silicon wafer by O$_2$ plasma treatment. Poly(l-lactide) (1-PLA) was attached onto the surface-modified silicon wafer by the ring-opening polymerization of l-lactide using the hydroxyl group as an initiator. Lamellar single crystals of 1-PLA were grown directly on the 1-PLA-attached silicon wafer from a 0.025% solution in acetonitrile at 5$^{\circ}C$. A well-separated, lozenge-shaped, monolayered lamellar single crystal was prepared because the 1-PLA-attached silicon wafer acts as an initial nucleus.

Study on Hydrolytic Kinetics of Langmuir Monolayers of Biodegradable Polylactide Derivatives

  • Lee, Jin-Kook;Ryou, Jin-Ho;Lee, Won-Ki;Park, Chan-Young;Park, Sang-Bo;Min, Seong-Kee
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.476-480
    • /
    • 2003
  • The rate of hydrolysis of Langmuir monolayer films of biodegradable polylactide (PLA) derivates was investigated at the air/water interface. The present study investigated such parameters as surface pressure, pH, and time. The hydrolysis of polyester monolayers depended strongly on the subphase pH, the concentration of active ions. Under the conditions studied here, polymer monolayers showed faster rates of hydrolysis when they were exposed to a basic subphase rather than they did when exposed to acidic or neutral subphases. By increasing the concentration of the degradation medium, the hydrolytic rate of dl-PLA monolayers was accelerated (accelerating effect). In addition, the basic hydrolysis of modified PLA with small amounts of hydrophilic (benzyloxycarbonyl) methyl morpholine-2,5-dione or glycolide was much faster than that of the PLA homopolymer.