• Title/Summary/Keyword: PIV(Particle Image Velocimetry

Search Result 552, Processing Time 0.026 seconds

A Study on a Development of a Measurement Technique for Diffusion of Oil Spill in the Ocean (디지털 화상처리에 의한 해양유출기름확산 계측기법개발에 관한 연구)

  • 이중우;강신영;도덕희;김기철
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.291-302
    • /
    • 1998
  • A digital image processing technique which is able to be used for getting the velocity vector distribution of a surface of the spilt oil in the ocean without contacting the flow itself. This technique is based upon the PIV(Particle Imaging Velocimetry) technique and its system mainly consists of a high sensitive camera, a CCD camera, an image grabber, and a host computer in which an image processing algorithm is adopted for velocity vector acquisition. For the acquisition of the advective velocity vector of floating matters on the ocean, a new multi-frame tracking algorithm is proposed, and for the acquisition of the diffusion velocity vector distribution of the spilt oil onto the water surface, a high sensitive gray-level cross-correlation algorithm is proposed.

  • PDF

Development of a High Resolution Cinematic Particle Image Velocimetry and Its Application to measurement of Unsteady Complex Turbulent Flows (고분해능 Cinematic PIV 시스템의 개발과 비정상 복잡 난류유동측정에의 응용)

  • Kim, Kyung-Chun;Park, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.536-541
    • /
    • 2001
  • A high resolution digital cinematic Particle Image Velocimetry(PIV) has been developed. The system consists of a high speed CCD camera, a continuous Ar-ion laser and a computer with camera controller. To improve the spatial resolution, we adopt a Recursive Technique for velocity interrogation. At first, we obtain a velocity vector for a larger interrogation window size based on the conventional two-frame cross-correlation PIV analysis using the FFT algorithm. Based on the knowing velocity information, more spatially resolved velocity vectors are obtained in the next iteration step with smaller interrogation windows. The correct velocity vector at the first step is found to be critical, so we apply a Multiple Correlation Validation(MCV) technique in order to decrease the spurious vectors. The MCV technique turns out to improve SNR(Signal to Noise Ratio) of the correlation table. The developed cinematic PIV method has been applied to the measurement of the unsteady flow characteristics of a Rushton turbine mixer. A total of 3,245 instantaneous velocity vectors were successfully obtained with 4 ms time resolution. The acquired spatial resolution corresponds the performance of the conventional high resolution digital PIV system using a $1K{\times}1K$ CCD camera.

  • PDF

Measurement of Honeycomb Turbulence in a Cavitation Tunnel Using Particle Image Velocimetry Method (PIV 기법을 이용한 캐비테이션 터널에서의 Honeycomb 난류 계측)

  • Ryu, Min-Cheol;Oh, Jung-Geun;Kim, Yoo-Chul;Koh, Won-Gyu;Lee, Youn-Mo;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.42-53
    • /
    • 2008
  • The two dimensional PIV (particle image velocimetry) measurement technique is applied to water flow in a narrow cavitation tunnel. The nearly homogeneous and isotropic turbulent flows are generated by the honeycomb installed in the tunnel and visualized with a PIV technique. The velocities in the measurement plane at the tunnel centerline 184cm downward from the honeycomb were measured and calculated by an image correlation technique. The turbulent properties are evaluated and each term in the turbulent kinetic energy equation is calculated for the conditions with different internal pressures. Lowering the internal pressure gives an effect on the turbulent flow due to growing bubbles which are resolved in the water. The turbulent kinetic energy in the measurement plane is decayed much slower than those of other research results carried out with wind tunnels. With decreasing the tunnel internal pressures the turbulent intensities are increased about 1.5 times and the anisotropic tendency is also increased.

Identification of Factors Affecting Errors of Velocity Calculation on Application of MLSPIV and Analysys of its Errors through Labortory Experiment (MLSPIV를 이용한 유속산정시 오차요인 규명 및 실내실험을 통한 유속산정오차 분석)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Large-Scale Particle Image Velocimetry (LSPIV) is an extension of particle image velocimetry (PIV) for measurement of flows spanning large areas in laboratory or field conditions. LSPIV is composed of six elements - seeding, illumination, recording, image transformation, image processing, postprocessing - based on PIV. Possible error elements at each step of Mobile LSPIV (MLSPIV), which is a mobile version of LSPIV, in field applications are identified and summarized the effect of the errors which were quantified in the previous studies. The total number of elemental errors is 27, and five error sources were evaluated previously, seven elemental errors are not effective to the current MLSPIV system. Among 15 elemental errors, four errors - sampling time, image resolution, tracer, and wind - are investigated through an experiment at a laboratory to figure out how those errors affect to velocity calculation. The analysis to figure out the effect of the number of images used for image processing on the velocity calculation error shows that if over 50 images or more are used, the error due to it goes below 1 %. The effect of the image resolution on velocity calculation was investigated through various image resolution using digital camera. Low resolution image set made 3 % of velocity calculation error comparing with high resolution image set as a reference. For the effect of tracers and wind, the wind effect on tracer is decreasing remarkably with increasing the flume bulk velocity. To minimize the velocity evaluation error due to wind, tracers with high specific gravity is favorable.

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee;Bu-Geun Paik;Seok-Kyu Cho;Jae-Hwan Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.137-144
    • /
    • 2023
  • This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.

A Study on Characteristics of the Flow Around Two Square Cylinders in a Tandem Arrangement Using Particle Image Velocimetry (PIV를 이용한 직렬배열에서의 두 정사각기둥 주위의 유동특성에 관한 연구)

  • Kim, Dong-Keon;Lee, Jong-Min;Seong, Seung-Hak;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1199-1208
    • /
    • 2005
  • The flow fields including velocities, turbulence intensities, Reynolds shear stress and turbulent kinetic energy were investigated using particle image velocimetry(PIV) to study the flow characteristics around two square cylinders in a tandem arrangement. The experiments were carried out in the range of the spacing from 1.0 to 4.0 widths of cylinder, Reynolds number of 5.3$\times$10$^{3}$ and 1.6$\times$10$^{4}$ respectively. Discontinuous jumping at the drag coefficient variation was found for two cylinders simultaneously when the spacing between two cylinders is varied. This phenomenon is attributed to a sudden change of the flow pattern which depends on the reattachment of the shear layer separated from the upstream cylinder. Near such a critical spacing, the changes of the flow fields as well as the effect of Reynolds number were studied in detail.

Analysys on Factors Affecting Velocity Errors On the Application of LSPIV (LSPIV를 적용시 오차발생 요인 분석)

  • Kim, Young-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1779-1783
    • /
    • 2008
  • 영상해석을 통한 흐름해석의 방법인 Large-Scale Particle Image Velocimetry (LSPIV)는 실험실내의 소규모 흐름해석에 이용하던 Particle Image Velocimetry (PIV)를 자연하천이나 실험실에서 넓은 영역($4m^2{\sim}45,000m^2$)에 적용할 수 있도록 확장시킨 것으로 지난 10여년전부터 세계적으로 널리 이에 대한 연구가 진행되고 있다. PIV는 seeding, illumination, recording 그리고 image processing으로 구성된다. LSPIV(Large Scale PIV)는 PIV의 기본원리를 근거로 하여 기존의 PIV에 비하여 실험실 내에서의 수리모형실험이나 일반 하천에서의 유속측정과 같은 큰 규모의 흐름해석을 할 수 있도록 seeding, illumination에 대한 조정이 필요 하고, 촬영된 image에 대한 왜곡을 없애는 작업이 필요하다. LSPIV는 PIV의 네 가지 단계를 포함하여 seeding, illumination, recording, image transformation, image processing 및 post-processing의 여섯 단계로 구성되어진다 (Li, 2002). LSPIV의 적용시 각 단계마다 유속계산시 오차를 발생시키는 27가지의 요인들이 존재하고 있는바 (Kim, 2006), 본 연구에서는 이들 중 실내의 실험실에서 파악이 가능한 인자들에 대해 그들 각각의 인자들이 유속 측정에 미치는 오차의 정도를 파악하고자 하였다. 본 연구에서는 LSPIV의 적용시 이용되는 이미지의 개수와 이미지 촬영시 적용된 이미지의 해상도에 따른 오차의 발생 정도를 조사하였다. 이미지 촬영에 있어서 비디오카메라를 이용할 경우 촬영시간에 따라 많은 수의 이미지를 취득할 수 있은바 이미지의 수에 따른 유속계산오차를 파악하고자 하였다. 또한 디지털 카메라를 이용할 경우 여러 가지 이미지 해상도를 이용할 수 있으므로 적용한 이미지 해상도에 따른 유속계산에 미치는 오차의 크기를 파악하고자 하였다. 이미지의 갯수가 유속계산시 미치는 오차의 영향의 정도를 조사하기 위해서 초당 30 frame을 촬영할 수 있는 비디오카메라를 이용하여 91초 동안 촬영된 이미지로부터 매 5번째의 이미지를 추출하여 455개의 이미지를 준비하였고 이로부터 이미지수를 10, 50, 100, 200, 300, 400의 순서로 증가시키면서 이미지 개수로부터 나타나는 유속계산 오차를 조사한 결과 이미지의 개수가 50매 이상인 경우는 이로 인한 오차가 1% 이하로 감소함을 파악하였다. 촬영된 이미지의 해상도가 유속계산시 미치는 영향을 조사하기 위해 디지털카메라를 적용하여 세가지 이미지 해상도(640*480, 1280*960, 2048*1536 pixel)로 변화시키면서 유속측정 오차를 분석한 결과 저해상도의 이미지를 이용한 경우 고해상도 이미지를 이용한 경우와 비교하여 3% 가량의 차이를 나타내었다.

  • PDF

Quantitative Measurements of Complex Flow Field Around a Hydrofoil Using Particle Image Velocimetry (PIV를 이용한 수중익 주위 복잡유동장의 정량적 계측)

  • B.S. Hyun;K.S. Choi;D.H. Doh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • An experimental study has been carried out at circulating water channel to investigate the viscous flow around breaking waves generated by a submerged hydrofoil(NACA0012). Detailed flow measurements were made at several critical points including an incipient wave-breaking point and a fully-developed wave breaker. Particle Image Velocimetry(PIV) was employed to visualize the flow field very close to the breaker as well as at the near- and far-wake of the breaker. Generation, development and decay of the wave breaker have been investigated. It is found that PIV technique could be well applied to the complex flow field, including the vortical structures near the free surface as well as the wake of the hydrofoil.

  • PDF

Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation (해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용)

  • Kim Mi-Young;Choi Jang-Woon;Lee Hyun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF