• Title/Summary/Keyword: PIN Diode Switch

Search Result 25, Processing Time 0.025 seconds

A High Power SP3T MMIC Switch (고출력 SP3T MMIC 스위치)

  • 정명득;전계익;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.782-787
    • /
    • 2000
  • The monolithic single-pole three-throw(SP3T) GaAs PIN diode switch circuit for the broadband and high power application was designed, fabricated and characterized. To improve the power handling capability, buffer layers of the diode employ both low temperature buffer and superlattice buffer. The diode show the breakdown voltage of 65V and turn-on voltage of 1.3V. The monolithic integrated switch employed microstrip lines and backside via holes for low-inductance signal grounding. The vertical epitaxial PIN structure demonstrated better microwave performance than planar type structures due to lower parasitics and higher quality intrinsic region. As the large signal characteristics of the fabricated SP3T MMIC switch, the insertion loss was measured less than 0.6dB and the isolation better than 50dB when the input power was increased from 8dBM to 32dBm at 14.5GHz.

  • PDF

Passive parasitic UWB antenna capable of switched beam-forming in the WLAN frequency band using an optimal reactance load algorithm

  • Lee, Jung-Nam;Lee, Yong-Ho;Lee, Kwang-Chun;Kim, Tae Joong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.715-730
    • /
    • 2019
  • We propose a switched beam-forming antenna that satisfies not only ultra-wideband characteristics but also beam-forming in the WLAN frequency band using an ultra-wideband antenna and passive parasitic elements applying a broadband optimal reactance load algorithm. We design a power and phase estimation function and an error correction function by re-analyzing and normalizing all the components of the parasitic array using control system engineering. The proposed antenna is compared with an antenna with a pin diode and reactance load value, respectively. The pin diode is located between the passive parasitic elements and ground plane. An antenna beam can be formed in eight directions according to the pin diode ON (reflector)/OFF (director) state. The antenna with a reactance load value achieves a better VSWR and gain than the antenna with a pin diode. We confirm that a beam is formed in eight directions owing to the RF switch operation, and the measured peak gain is 7 dBi at 2.45 GHz and 10 dBi at 5.8 GHz.

Pulse 2 kW RF Limiter at S-band (S-대역 펄스 2 kW RF 리미터)

  • Jeong, Myung-Deuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.791-796
    • /
    • 2012
  • A RF limiter is a component to protect the receiver front end from undesired signal. A RF limiter is a key component whose output is constant level for all inputs above a critical value. A RF limiter use a diode to pass signals of low power while attenuating those above some threshold. A RF limiter for receiver protection in modern radar systems is playing a vital role in order to meet challenges of new interference threats and complicated electromagnetic environments. This paper proposed a new circuit for high power RF limiter whose structure is the combination of the PIN diode and Limit diode. PIN diode take a use of its isolation characteristics which act as a switch does. A 2 kW RF limiter with 200 us pulse width at S-band was developed. It shows good agreements between estimated value and measured results.

Switchable Frequency of an Equilateral Triangular Microstrip Antenna with PIN Diodes (PIN 다이오드를 이용한 정삼각형 마이크로스트립 안테나의 동작 주파수 변환)

  • 김보연;성영제;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1090-1099
    • /
    • 2004
  • In this paper a novel design of equilateral-triangular microstrip antenna using PIN diode fur switching the resonant frequency is presented and experimentally studied. The proposed antenna has changed the resonant frequency by length of spur-lines on the patch, and PIN diodes are utilized to switch the spur-line on and off. The shape of the spur-line is changed according to the on and off states of PIN diode and the equilateral triangular microstrip antenna has different resonant frequencies in accordance with them. The resonant frequency is 1.22 GHz with off states since the surface currents flow the periphery of T shape spur-lines, while the resonant frequency is 1.82 GHz with on states since the surface currents are little effect with the conventional equilateral triangular microstrip antenna. The radiation pattern of the proposed antenna has a good linear polarization with the cross polarization of -20 dB both with on and off states.

Design of A Waveguide Limiter Having an Improved Attenuation and a Broadened Bandwidth by Using Multiple PIN-Diode Posts (다중 PIN-다이오드 포스트를 이용한, 향상된 감쇄량과 대역폭이 늘어난 도파관 리미터의 설계)

  • Kattak, Muhammad Kamran;Yoo, Seon-woong;Kahng, Sungtek;Yoo, Seongryong;Oh, DongChul;Roh, DonSuk;Yun, Songhyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.26-31
    • /
    • 2015
  • This paper deals with a size-reduced Ku-band waveguide limiter. Basically, it passes the signal from 16.125 GHz through 16.375 GHz, but when excessively high power is injected to the input port, it should change to a bandstop filter. Furthermore, it is required to change to bring attenuation by more than 20 dB and 50 dB over a narrow band and the entire passband, respectively. Therefore, in order to meet this requirement, a limiting device is implemented with multiple PIN-diode posts that enable the limiter to be the bandpass filter and stopband one at the off and on states of the PIN-diode switch, respectively. So, the design goes through the equivalent circuit modelling and the geometry is realized in the accurate electromagnetic analysis CAD tool. Finally, the result is discussed to shed light on whether it complies with the aforementioned requirement.

Design of a S-Band Transfer-Type SP4T Using PIN Diode (PIN 다이오드를 이용한 S-대역 고출력 경로선택형 SP4T 설계)

  • Yeom, Kyung-Whan;Im, Pyung-Soon;Lee, Dong-Hyun;Park, Jong-Seol;Kim, Bo-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.834-843
    • /
    • 2016
  • In this paper, the design of a PIN diode S-band transfer-type SP4T including its driver circuit is presented. Each path of the SP4T is composed of the cascade connection of series-shunt PIN diodes to improve the isolation performance. The SP4T is implemented using chip type PIN diodes and a 20 mil AIN substrate fabricated using thin film technology. The driver circuit for the SP4T is designed using a multiplexer and four NMOS-PMOS push-pull pair. From on-wafer measurement, the fabriacted SP4T shows a maximum insertion loss of 1.1 dB and a minimum isolation of 41 dB. The time performance of the driver circuit is evaluated using the packaged PIN diodes with the identical PIN diode chip, and the transition time for on-off and off-on are below 100 nsec. For an input power level of 150 W, the measured insertion loss and isolation are close to those of the on-wafer measurement taking into consideration of the coaxial package mismatch and insertion loss.

Reconfigurable Microstrip Patch Antenna with Switchable Polarization

  • Chung, Kyung-Ho;Nam, Yong-Sik;Yun, Tae-Yeoul;Choi, Jae-Hoon
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.379-382
    • /
    • 2006
  • A novel reconfigurable microstrip patch antenna with frequency and polarization diversities is proposed. A U-slot is incorporated into a square patch, and a PIN diode is utilized to switch the slot on and off, which realizes the frequency diversity characteristic. The polarization diversities among linear polarization (LP), right-hand circular polarization (RHCP), and left-hand circular polarization (LHCP) are also obtained by switching three PIN diodes on the slot and the truncating corners of a square patch on and off. The antenna design and experimental results are presented.

  • PDF

Design of V/UHF-Band SP3T Transmitting/Receiving Switch (V/UHF 대역 SP3T 송수신 스위치 설계)

  • Lee, Byeong-Nam;Park, Dong-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.34-41
    • /
    • 2008
  • This paper describes the design of SP3T PIN diode switch which has a 500W high power handling capability in $20{\sim}400MHz$ frequency range. Design factors were investigated and it was confirmed by simulation that the characteristics of insertion loss, VSWR, and isolation met design goal. Also, the capability to handle 500W high power with very fast switching speed of less than $26{\mu}s$ was confirmed and insertion loss of less than 1dB, VSWR of less than 1.4:1, and isolation of higher than 60dB were obtained by experiments.

A Study on design of the PZT Cantilever for Micro Switch (Micro Switch용 PZT Cantilever의 설계에 관한 연구)

  • Kim, In-Sung;Song, Jae-Sung;Min, Bok-Ki;Jeong, Soon-Jong;Muller, A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.422-423
    • /
    • 2005
  • RF Micro switches is a miniature device or an array of integration devices and mechanical components and fabricated with Ie batch-processing techniques. RF Micro switches application area are in phased arrays and reconfigurable apertures for defence and telecommunication systems, switching network for satellite communication, and single-pole double throw switches for wireless application. Recently, RF Micro switches have been developed for the application to the milimeter wave system. RF Micro switches offer a substantilly higher performance than PIN diode or FET switches. In this paper, SPDT(single-pole-double-throw) switch are designed to use 10 GHz. Actuation voltage and displacement are simulated by tool.

  • PDF