• Title/Summary/Keyword: PIDD Control

Search Result 3, Processing Time 0.021 seconds

A Study on the Magnetically Suspended Spindle with 16-pole Radial Magnets (16 극의 반경방향 전자석을 갖는 자기부상 주축계 연구)

  • Park, Jong-Kweon;Ro, Seung-Kook;Kyung, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.203-212
    • /
    • 2002
  • Active magnetic hearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. This paper describes a design and test of an active magnetic bearing system with 16-pole radial magnets. The spindle is originally designed for a CNC lathe and driven by outer motor with 5.5 kW power and maximum speed 10,000 rpm. Considering static load condition and geometric restrictions, radial magnet is designed 16-pole type for smaller outer diameter of the spindle system. Dynamic system characteristics such as natural frequency, critical speed, stiffness, damping and system stabilities are simulated with a rigid rotor model including direct feedback controller. The designed spindle system is realized with digital PIDD controller to compensate phase lag of PWM amplifier and magnet coils. With levitation and step response experiment the control system characteristics are tested, and the spindle is rotated up to 10,000 rpm stab1y.

Digital control of active magnetic bearing using digital signal processor

  • Shimomachi, T.;Ishimatsu, T.;Taguchi, N.;Fukata, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.760-765
    • /
    • 1989
  • Digital control laws are implemented on an active magnetic bearing system with DSP. The results of tests using a experimental apparatus are (1) in a case that conventional PID, PIDD2 controls are employed, implemention of digital control law has similar characteristics to that of analogue control law. (2)The experiments reveal the results that the dynamic compensation based on the observer may be better than that of the other conventional controllers.

  • PDF

Design and Performance Analysis of PID type Controllers for Automatic Voltage Regulator(AVR) System Based on i-PID, GPI and OCD Methods (AVR(Automatic Voltage Regulator)시스템을 위한 PID형 제어기의 설계 -i-PID, GPI 및 OCD 알고리즘을 중심으로 -)

  • Choe, Yeon-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1383-1391
    • /
    • 2016
  • This paper is concerned with applicability of a new type of controllers, called i-PID and GPI in which unknown parts of the plant are taken into account without any modeling procedure, to automatic voltage regulator (AVR) system. First, the procedure for applying i-PID and GPI algorithms to AVR system is proposed, which uses model reduction technique based on the given information of AVR. Second, simulations are given to verify their effectiveness comparing to various PID algorithms including PIDD2 which is four-term controller, that is, consisting of PID and second order derivative terms. Superior response performances of i-PID and GPI in comparison to conventional PID controllers are shown. Moreover, i-PID can highly improve the system robustness with respect to model uncertainties, especially to load variations.