• Title/Summary/Keyword: PID-control with fuzzy logic control

Search Result 104, Processing Time 0.033 seconds

A Study on Position and Force Control of A Robot Manipulator with Artificial Rubber Muscle (고무인공근 로보트 매니퓨레이터의 위치 및 힘 제어에 관한 연구)

  • Jin, Sang-Ho;Watanabe, Keigo;Lee, Suck-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 1995
  • This paper describes position and force hybrid control for a robot manipulator with artificial rubber muscle actuators. The controller using two control laws such as PID control and fuzzy logic control methods is designed. This paper concludes to show the effectiveness of the proposed controller by some experiments for a two-link manipulator.

  • PDF

The Design of Fuzzy P+ID Controller for Brushless DC Motor Speed Control (BLDC 전동기의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Kim, Sung-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.823-829
    • /
    • 2006
  • In this paper presents approaches to the design of a hybrid fuzzy logic proportional plus conventional integral- derivative(fuzzy P+ID) controller in an incremental form. This controller is constructed by using an incremental fuzzy logic controller in place of the proportional term in a conventional PID controller. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

PID control with parameter scheduling using fuzzy logic

  • Kwak, Jae-Hyuck;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • This paper describes new PID control methods based on the fuzzy logic. PID gains are retuned after evaluating control performances of transient responses in terms of performance features. The retuning procedure is based on fuzzy rules and reasoning accumulated from the knowledge of experts on PID gain scheduling. For the case that the retuned PID gains result in worse CLDR (characteristics of load disturbance rejection) than the initial gains, an on-line tuning scheme of the set-point weighting parameter is, proposed. This is based on the fact that the set-point weighting method efficiently reduce either overshoot or undershoot without any degradation of CLDR. The set-point weighting parameter is adjusted at each sampling instant by the fuzzy rules and reasoning. As a result, better control performances were achived in comparison with die controllers tuned by the Z-N (Ziegler-Nichols) parameter tuning formula or by the fixed set-point weighting parameter.

  • PDF

Temperature Control for an Oil Cooler System Using PID Control with Fuzzy Logic (퍼지 적용 PID제어를 이용한 오일쿨러 시스템의 온도제어)

  • 김순철;홍대선;정원지
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • Recently, technical trend in machine tools is focused on enhancing of speed, accuracy and reliability. The high speed usually results in thermal displacement and structural deformation. To minimize the thermal effect, precision machine tools adopt a high precision cooling system. This study proposes a temperature control for an oil cooler system using Pill control with fuzzy logic. In the cooler system, refrigerant flow rate is controlled by rotational speed of a compressor, and outlet oil temperature is selected as the control variable. The fuzzy control rules iteratively correct PID parameters to minimize the error and difference between the outlet temperature and the reference temperature. Here, ambient temperature is used as the reference one. To show the effectiveness of the proposed method, a series of experiments are conducted for an oil cooler system of machine tools, and the results are compared with the ones of a conventional Pill control. The experimental results show that the proposed method has advantages of faster response and smaller overshoot.

Fuzzy-based PID Controller for Cascade Process Control

  • Tummaruckwattana, S.;Pannil, P.;Chaikla, A.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.268-271
    • /
    • 2004
  • This paper describes the development of a fuzzy logic control based on PID controller to improve the performances of the control system using conventional PID controller for the cascade process control systems. The structure of the proposed control system consists of two fuzzy-based PID controllers. One is used to eliminate the input disturbances of the inner loop and the other is used to regulate output response of the outer loop. The fuzzy PID design is derived from the linear-time continuous function of the conventional PID controller. The performance of the proposed controller is verified by MATLAB/SIMULINK simulation. Results of simulation studies demonstrates the outstanding of the control system using fuzzy-based PID controller in terms of reduced overshoot and fast response compared with the conventional PID controller.

  • PDF

Derivation of a Linear PID Control Law from a Fuzzy Control Theory (퍼지 제어기로부터 PID 제어기의 구현에 관한 연구)

  • 최병재;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.70-78
    • /
    • 1997
  • Proportional-integral-derivative(P1D) controllers have been still widely used in industrial processes due to their simplicity, effectiveness, robustness for a wide range of operating conditions, and the familiarity of control engineers. And a number of recent papers in fuzzy systems are showing that fuzzy systems are universal approximators. That is, fuzzy controllers are capable of approximating any real continuous function on a compact set of arbitrary accuracy. In this paper, we derive the linear PID control law from the fuzzy control algorithm where all fuzzy sets for representing plant state variables and a control variable use common triangular types. We first lead a linear PD control law from a fuzzy logic control with only two fuzzy sets for error and change-of-error. And then we derive the linear PID control law from a fuzzy controller. We here assumed that the intervals of error, change-of-error, and integral error could be partitioned into arbitrary numbers, respectively. As a result, a linear PID controller is only a sort of various fuzzy logic controls.

  • PDF

Design of Fuzzy Precompensated PID Controller for Load Frequency Control of Power System using Genetic Algorithm (유전 알고리즘을 이용한 전력계통의 부하주파수 제어를 위한 퍼지 전 보상 PID 제어기 설계)

  • Jeong, Hyeong-Hwan;Wang, Yong-Pil;Lee, Jeong-Pil;Jeong, Mun-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.62-69
    • /
    • 2000
  • In this paper, we design a GA-fuzzy precompensated PID controller for the load frequency control of two-area interconnected power system. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic-based precompensation approach for PID controller. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PID controller. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PID control and a fuzzy precompensated PID control in dynamic responses about the load disturbances of power system and is convinced robustness reliableness in view of structure.

  • PDF

Modified Ziegler-Nichols PID Controller Design using the Fuzzy Logic System

  • Jung, Kyung-kwon;Eom, Ki-hwan;Chung, Sung-boo;Lee, Hyun-kwan;Son, Dong-seol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.85.2-85
    • /
    • 2001
  • In this paper, we propose a modified Ziegler-Nichols PID controller using the fuzzy logic system. The proposed method is to parameterize a Ziegler-Nichols formula with a single parameter, and use the fuzzy logic system for automatic tuning of a single parameter of the modified Ziegler-Nichols formula. The fuzzy logic system has simple nine control rules. In order to verify the effectiveness of the proposed method, we simulated with the servo system. Simulation results demonstrate that better control performance can be achieved when compared with that of the Ziegler-Nichols PID controller.

  • PDF

Design of Excitation Control System of Synchronous Generator on Board Ships (선박용 동기 발전기의 여자 제어시스템 설계)

  • Lee, Youngchan;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.298-305
    • /
    • 2015
  • This paper provides experimental results of an excitation control system of the synchronous generator on board ships in accordance with rules of classification society to make sure its performance. The experiment compares and reviews control results between PID control and fuzzy logic control applied to change of loads of the generator in order to make sure to satisfy the rules of classification society. Both of them are written by Labview program. In case of PID Control, this paper firstly adjusts the gains by ultimate sensitive method and the gains is more tuned by engineer's experience. And the fuzzy logic controller uses Mamdani method to make membership function for error between reference voltage and measuring voltage, differential error rate and output voltage. This paper is to make sure the experimental results of the proposed excitation control system applied to actual small synchronous generator with PID control and fuzzy logic written by using Labview program and it is proved on stability and improvement through experiments.

Hybrid Position/Force Control of Robot Manipulator using Fuzzy Logic Control

  • Ahn, Ihn-Seok;ahn, Kwang-Seok;Kim, Sang-Bin;Jang, Jun-Oh;Park, Sang-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.5-129
    • /
    • 2001
  • When a robot manipulator performs some task like grinding or assembling, not only the position control but also the force control of the tools connected to the robot must be controlled. But at this time We were received the uncertainty problems of system information for the force control, for example disturbance, senor resolution and measurement noise. Therefore we proposed fuzzy logic control method instead of existing control theory for the robot manipulator control, for example PID control method. In this paper, We proposed hybrid position/force control of robot manipulator using fuzzy logic control method. To show the validity of the proposed fuzzy controller, We compared fuzzy controller with conventional PID controller.

  • PDF