• Title/Summary/Keyword: PID position control

Search Result 357, Processing Time 0.025 seconds

Control of DC Servo Motor using PID Controller Self-Tuning (PID제어기의 자기동조를 이용한 직류 서보전동기의 위치제어)

  • Kim, Gwon-Sub;Lee, Oh-Keol;Kim, Sang-Hyo;Ko, Tai-Eun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1113-1115
    • /
    • 1996
  • The servo system requires faster and more accurate dynamic responses. A new technique for the position control of DC servo motors is presented in this paper. The proposed technique employs a Self Tuning Regulator Proportional Integral Derivative(STR PID) position control systems in order to improve the dynamic performance of a DC servo motor. Recursive -least -squares (RLS) method is used in order to estimate the STR PID coefficients, $K_P$, $K_I$, and $K_D$. In order to consider dynamics such as voltage, angular velocity, and rotor angle, the above method was applied position control system.

  • PDF

A study on optimal position control using a microprocessor (마이크로 프로세서를 이용한 최적위치제어에 관한 연구)

  • 양주호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.51-64
    • /
    • 1986
  • Recently, being due to development of a small microprocessor, microprocessor have found increasing application as a digital controller in the control system. In this paper, authors analyze theoretically the continuous PID controller of a position control system with servomotor, and program the microprocessor as digital PID controller by an assembly language, and search the optimal parameters of the digital PID controller which make the smallest integral square error criterion for a performance criterion, and take experiment the indicial responses with optimal parameter. The results are following. 1) PD- behavior controller was better than P-behavior controller. 2) The smaller the smapling times of P-behavior controller and PD-behavior controller were, the better the indicial responses of the discrete system were. 3) Using a small microprocessor could replace the traditional continuous PID controller for good control.

  • PDF

Development of Electric Actuator Position Control System for Automatic Shuttle Shifting of Tractor (트랙터의 전후진 자동 변속을 위한 전자식 액추에이터의 위치 제어 시스템 개발)

  • Choi, Chang-Hyun;Woo, Mi-Na;Lee, Dae-Hyun;Kim, Yong-Joo;Jeong, Jin-Hee
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • The purpose of this study was to develop position control system of an electric actuator for automatic shuttle shifting of a tractor. The electric actuator was installed at the link of the forward-reverse gearshift of the tractor transmission, and controlled in the ranges of forward, neutral, and reverse positions. The position control system of the electric actuator was developed based on PID (Proportional Integral Derivative) controller and transfer function of the electric actuator. The coefficients of the PID controller were determined by Ziegler-Nichols (Z-N) method and optimized using simulation program. The prototype AMT (Automated Manual Transmission) test unit of the tractor was installed and used to evaluate the performance of the position control. The evaluation system for the control performance consisted of forward-reverse actuator, motor driver, and controller. The tests were conducted as the controlled positions of the actuator were changed from neutral position to forward, neutral, and reverse positions in sequence. The sequential tests were repeated 20 times. The operations of changing the gearshift were considered as the step response of the control system. Maximum overshoot, settling time, and steady-state error were analyzed. The results showed that performance of the position control system was reasonable and qualified. The maximum overshoots, the steady-state errors, and the settling times of the position control system were 10~20%, 1~5%, and 0.92~1.49 sec, respectively. The modifications of the electric actuator will be required to enhance the performance of position control during field operation.

Neural Network PID control method for robust disturbance (외란에 강인한 신경망 PID 제어방식)

  • 김영렬;이정훈;강성호;임성진;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.945-948
    • /
    • 2003
  • In this paper, we propose a robust PID control method with neural network to minimize the influence of the disturbance to happen in the system. The proposed method, the neural network filters out the disturbance of control system. The plant input which a disturbance is included is compensated to the output of neural network and the plant is controlled only PID controller. Through the DC motor control simulation and MM-LDM position control experiment, we could confirm the proposed method is robust at the disturbance in control system.

  • PDF

A study of the position control of the BALL-HOOP system (BALL-HOOP시스템의 위치 제어에 관한 연구)

  • 주해호;이훈구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.282-285
    • /
    • 1989
  • This paper presents a new algorithm for position control of the BALL-HOOP system driven by th D.C. servo motor-through the micro computer simulation. The Stale Feed back + PID control algorithm is proposed. This algorithm performs that the settling time is faster and overshoot is decreased more remarkably than the PID and the State Feedback algorithm alone. In this simulation the difference equations are used to calculate the output of the control system.

  • PDF

Implementation of the two-degree-of freedom PID Position Controller for Linear Motor Drive with Easy Gain Adjustment (이득 설계가 간단한 선형전동기 2자유도 PID 위치제어기 구현)

  • Ha, Hong-Gon;Lee, Chang-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Recently, the application of the linear machine for industrial field is remarkably increased, especially for the gantry machine, machine tool system and CNC. However a linear meter remains the vibrational characteristic itself therefore, In these application fields, high position control performance is essentially required in both the steady and the transient states. In this paper, the design method for a position control is proposed by using the two-degree-of freedom PID controller. This method has great features for the linear machine drives such as no over-shoot phenomena and single gain tuning strategy. By comparison with conventional PID controller, the improvement of performance of a linear motor control system using two degrees of freedom controller are discussed. Through the simulation results, the usefulness of the proposed algorithm is proved. With the simulation results, it was made clear that the introduction of two degrees of freedom controller designed by the proposed method not only improves the over shoot and starting characteristic of response but also removes the undesirable characteristic variation.

  • PDF

Anti-Sway Position Control of an Automated Transfer Crane Based on Neural Network Predictive PID Controller

  • Suh Jin-Ho;Lee Jin-Woo;Lee Young-Jin;Lee Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.505-519
    • /
    • 2005
  • In this paper, we develop an anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The simulation and experimental results show that the proposed control scheme guarantees performances, trolley position, sway angle and settling time in NNP PID controller than other controller. As the results in this paper, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications.

A Study on Measurement and Automation Method of Cylinder Head Swirl (실린더 헤드 스월 측정 및 자동화 방법에 관한 연구)

  • Lee Choong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.92-99
    • /
    • 2006
  • The swirl ratio of a charge in the cylinder was estimated by calculating the ratio of the rotary speed of charge which could be simulated from the rotary speed of paddle in the swirl measurement apparatus, to the engine speed which could be calculated by measuring intake air flow rate. The automation of the swirl ratio measurement for cylinder head was achieved by controling both valve lift in cylinder head and a suction pressure of surge tank using two step-motors. The number of measurement position for calculating mean swirl ratio was varied by adjusting the interval of valve lift. The mean swirl ratio with varying the number of measurement position showed nearly constant value. Two measurement methods for measuring the swirl ratio were compared, one was to control the suction pressure of the surge tank with PID (proportional, integral, differential) mode with by-pass valve controlled by the step motor and the other did not control the surge tank pressure by fixing the by-pass valve. The difference of the mean swirl ratio between the two measurement methods showed nearly constant value with varying the number of measurement position. This means that the w/o PID control method could be preferred to the PID control method which has been used, due to the simpleness of the swirl measurement.

Simultaneous precision positioning and vibration suppression of reciprocating flexible manipulators

  • Ma, Kougen;Ghasemi-Nejhad, Mehrdad N.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-27
    • /
    • 2005
  • Simultaneous precision positioning and vibration suppression of a reciprocating flexible manipulator is investigated in this paper. The flexible manipulator is driven by a multifunctional active strut with fuzzy logic controllers. The multifunctional active strut is a combination of a motor assembly and a piezoelectric stack actuator to simultaneously provide precision positioning and wide frequency bandwidth vibration suppression capabilities. First, the multifunctional active strut and the flexible manipulator are introduced, and their dynamic models are derived. A control strategy is then proposed, which includes a position controller and a vibration controller to achieve simultaneous precision positioning and vibration suppression of the flexible manipulator. Next, fuzzy logic control approach is presented to design a fuzzy logic position controller and a fuzzy logic vibration controller. Finally, experiments are conducted for the fuzzy logic controllers and the experimental results are compared with those from a PID control scheme consisting of a PID position controller and a PID vibration control. The comparison indicates that the fuzzy logic controller can easily handle the non-linearity in the strut and provide higher position accuracy and better vibration reduction with less control power consumption.

Precision Position Control of Piezoactuator Using Inverse Hysteresis Model and Neuro-PID Controller (역히스테리시스 모델과 PID-신경회로망 제어기를 이용한 압전구동기의 정밀 위치제어)

  • 김정용;이병룡;양순용;안경관
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • A piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearty is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearty can not be neglected. The hysteresis nonlinearty of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearty. And feedforward - feedback controller is proposed to give a good tracking performance. The Feedforward controller is an inverse hysteresis model, base on neural network and the feedback control is implemented with PID control. To show the feasibility of the proposed controller and hysteresis modeling, some experiments have been carried out. It is concluded that the proposed control scheme gives good tracking performance.