• Title/Summary/Keyword: PID position control

Search Result 356, Processing Time 0.029 seconds

Controller Transition Management of Hybrid Position Control System for Unmanned Expedition Vehicles (무인탐사차량의 위치제어를 위한 복합제어 시스템의 제어기 전이관리)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.969-976
    • /
    • 2008
  • A position control problem is studied for UEV(Unmanned Expedition Vehicles), which is to follow pre-determined paths via fixed way-points. Hybrid control systems are used for position control of UEV depending on the operating condition. Speed control consists of three controllers: PID control, adaptive PI control, and neural network. Heading control consists of two controllers, PID and adaptive PID control. The controllers are selected based on the changes of road conditions. We suggest an adaptive PI control algorithm for speed control and an transition management algorithm among the controllers. The algorithm adapts the road conditions and variation of vehicle dynamical characteristics and selects a suitable controller.

A Study on Position and Force Control of A Robot Manipulator with Artificial Rubber Muscle (고무인공근 로보트 매니퓨레이터의 위치 및 힘 제어에 관한 연구)

  • Jin, Sang-Ho;Watanabe, Keigo;Lee, Suck-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 1995
  • This paper describes position and force hybrid control for a robot manipulator with artificial rubber muscle actuators. The controller using two control laws such as PID control and fuzzy logic control methods is designed. This paper concludes to show the effectiveness of the proposed controller by some experiments for a two-link manipulator.

  • PDF

A Study on the PID Control Gain Selection Scheme of a High-Speed/High-Accuracy position Control System using Taguchi Method (다구찌 방법을 이용한 고속/정밀 위치제어시스템의 PID 제어게인 선정에 관한 연구)

  • 신호준;채호철;한창수
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For modeling elements, the system is divided into electrical part, magnetic part, and mechanical part. Each part is modeled using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to obtain the more robust PID gain combinations than conventional one. This study makes use of an L18 array with three parameters varied on three levels. Results of simulations and experimental show that the designed PID controller provides a improved ratio of signal to noise and a reduced sensitivity improved to the conventional PID controller.

  • PDF

A Study on Controller Design for An Optimal Control of Container Crane (컨테이너 크레인의 최적제어를 위한 제어기 설계에 관한 연구)

  • 최성욱;손주한;이진우;이영진;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.142-142
    • /
    • 2000
  • During the operation of crane system in container yard, it is necessary to control the crane trolley position so that the swing of the hanging container is minimized. Recently an automatic control system with high speed and rapid transportation is required. Therefore, we designed a controller to control the crane system with disturbances. In this paper, Ive present the neural network two degree of freedom PID controller to control the swing motion and trolley position. Then we executed the computer simulation to verify the performance of the proposed controller and compared the performance of the neural network PID controller with our proposed controller in terms of the rope swing and the precision of position control . Computer simulation results show that the proposed controller has better performances than neural network PID with disturbances.

  • PDF

In Position control system, the Design of PIDA Controller using Neural Network algorithm with Acceleration control function (위치제어계에서 신경망 알고리즘을 이용하여 가속도 제어기능을 갖는 PIDA 제어기 설계)

  • 최의혁;박광현;하홍곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.310-313
    • /
    • 2002
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when the control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an PIDA controller is constructed by Two-Layers Neural Network applying back-propagation(BP) algorithm. Form the result of compute. simulation in the proposed controller, its usefulness is verified.

  • PDF

The Control of Inverted Pendulum for PID Controller (PID 제어기를 이용한 도립진자 제어)

  • 송해석;장갑부;노태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.124-124
    • /
    • 2000
  • In this paper, The PID controller for stabilization of an inverted pendulum system is proposed. The PR control rule is very common in control systems. It is the basic tool for solving most process control problem. We consider the inverted pendulum system containing two PID controllers. The first controls the angle of the pendulum. The second is used to control the position of the cart. We can show stabilization of the PID controller through simulation of the inverted pendulum system.

  • PDF

Position Control of Servo Motor using Hybrid Controller (하이브리드 제어기를 이용한 서보 전동기의 위치제어)

  • Kwon, Se-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • PID controllers are simple in structure and easy for implementation. However, they may produce large overshoots and over-oscillatory responses. Combining PID control with other control techniques often results in advanced hybrid schemes that are able to improve pure PID controllers. This paper proposes hybrid controller for position control system of servo motor. The proposed controller is composed of a subcontroller and a parallel PID controller. The subcontroller improves the transient system performance while the PID controller is mainly responsible for the steady-state system performance. A very promising advantage of this hybrid scheme, in terms of controller synthesis, is that the subcontrollers and controller components can be designed separately. Systematic design methods for various controller components are developed. The proposed hybrid scheme is applied to a DC motor position servo system. The effectiveness of the proposed controller is verified through the computer simulation results.

  • PDF

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

A Study on the Robust Control Gain Selection Scheme of a High-Speed/High-Accuracy Position Control System (고속/정밀 위치 제어 시스템의 강인한 제어게인 선정에 관한 연구)

  • Shin, Ho-Joon;Yun, Seok-Chan;Jang, Jin-Hee;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.747-753
    • /
    • 2001
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For the modeling elements, the system is divided into electrical system, magnetic system, and mechanical system. Each system is modeled by using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to evaluate the more robust PID gain combinations. This study makes use of an L18 array with three parameters varied on three levels. Computer simulations and experimental results show that the designed PID controller provides more improved signal to noise ratio and reduced sensitivity than the conventional PID controller.

  • PDF

Development of 1-axis Exciter for a Seat Vibration Test of Agricultural Tractors(I) - Design of PID Controller for Position Control of 1-axis Exciter - (농용트랙터용 운전자 좌석 진동 시험을 위한 1축 가진 시험기 개발(I) - 1축 가진 시험기 위치 제어를 위한 PID 제어기 설계 -)

  • Yu, Ji-Hoon;Choi, Young-Kyun;Lee, Kyu-Cheol;Kim, Young-Joo;Ryu, Young-Sun;Ryuh, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.305-314
    • /
    • 2009
  • The purpose of this paper was to design an effective control system of 1-axis exciter for a seat vibration test of agricultural tractors using MATLAB simulation. The developed simulation model was composed with a hydraulic pump, a hydraulic servo valve, a hydraulic cylinder and load system. Also it was verified by comparing the simulation results with experimental results of actual control system in order to optimize the control performance. And in order to improve its control performance, the designed PID controller in this research was tuned using Ziegler-Nichols 2nd law and zero's moving method of PID controller's transfer function. As the result of these research, the developed position control system was able to control the system's position accurately within 5% errors.