• Title/Summary/Keyword: PID controller PID

Search Result 1,747, Processing Time 0.025 seconds

A Study on Dynamic Stability in AC-DC Power System using IA-PID Controller (IA-PID 제어기를 이용한 교류-직류시스템의 동태안정도에 관한 연구)

  • Chung, Hyung-Hwan;Chung, Hyun-Hwa;Wang, Yong-Peel;Park, Hee-Chur
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.161-163
    • /
    • 2001
  • In this paper, a method for optimal design of PID controller using the immune algorithm(IA) has been proposed to improve the stability of A.C.-D.C. power system. To design optimal PID controller, formulation of AC-DC system equation, selection of stability analysis model, formulation immune algorithm and application model of optimal PID controller are proposed in order of the paper. In case of various disturbance, computer simulations have been performed and the proposed IA-PID controller has been compared with base controller which is conventional control technique for dynamics. From simulation results, it is demonstrated that proposed IA-PID controller has good dynamic responses about the disturbance of power system and reliability as compared with the base control.

  • PDF

Comparison of two controllers using IFAC 93 Benchmark Test (IFAC93 벤치마크 테스트를 통한 2개의 제어기 비교)

  • Baek, Seung-Uk;Yu, Chi-Hyung;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.617-619
    • /
    • 1998
  • A PID-controller is proposed as a controller to the IFAC93 benchmark process. It is compared with a Textbook PID-controller and a Derivative of output PID-controller. Especially, the Derivative of output PID controller works within the critical bounds of ${\pm}1.5$ except for 1 out of 15 periods at stress level 1,2. The objective of this paper, then, is to report on an alternative benchmark (IFAC93) and reveal more efficient PID controller between Textbook PID-control and Derivative of output PID-controller.

  • PDF

Simulation for Intelligent Cruise Control of vehicle using Fuzzy-PID Controller (Fuzzy-PID 제어기를 이용한 차량의 정속주행 시뮬레이션)

  • 임영도;김승철;박재형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.603-610
    • /
    • 1998
  • The purpose of this paper is to describe how the characteristics of the movement of cars can be modeled with computers. For this, we use Matlab and simulate the characteristics of the cruise-speed at which the car is driven using the Fuzzy PID controller. The model of the car is designed by M-S(Matlab-Simulink) and each parameter of PID is estimated automatically by the Fuzzy controller. The simulation of the car is carried out on straight base tracks, and then this is compared and analyzed with the simple Fuzzy controller and the simple PID controller.

  • PDF

A Study on the Nonlinear Fuzzy PID Controller with Variable Parameters (가변 파라미터를 갖는 비선형 퍼지 PID 제어기에 관한 연구)

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • This paper proposes a nonlinear fuzzy PID controller with variable parameters to improve slow rising time and divergence occurred by limited input spaces and a resultant limited control input during fuzzification in a fuzzy PID controller with fixed parameters, and describes the design principle and tracking performance of a proposed fuzzy PID controller. The parameters of a proposed controller are adjusted by the stability conditions derived from 'small gain theorem' and satisfy the BIBO stability of overall control system.

Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller (비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술)

  • Koo, Bae-Young;Won, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

Implementation of the Mass Flow Controller using Adaptive PID (적응 PID를 이용한 질량 유량 제어기 구현)

  • Baek, Kwang-Ryul;Cho, Bong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2007
  • The MFC(Mass Flow Controller) is an equipment that measures and controls mass flow rates of fluid. Most of the HFC system is still using the PID algorithm. The PID algorithm shows superior performance on the MFC system. But the PID algorithm in the MFC system has a few problems as followed. The characteristic of the MFC system is changed according to the operating environment. And, when the piezo valve that uses the control valve is assembled in the MFC system, a coupling error is generated. Therefore, it is very difficult to find out the exact parameters of MFC system. In this paper, we propose adaptive PID algorithm in order to compensate these problems of a traditional PID algorithm. The adaptive PID algorithm estimates the parameters of MFC system using LMS(Least Mean Square) algorithm and calculates the coefficients of PID controller. Besides, adaptive PID algorithm shows better transient response because adaptive PID algorithm includes a feedforward. And we implement MFC system using proposed adaptive PID algorithm with self-tuning and Ziegler and Nickels's method. Finally, comparative analysis of the proposed adaptive PID and the traditional PID is shown.

Stability Analysis and Proposal of the Simplified Form of a Fuzzy PID Controller with Fixed Parameters (고정 파라미터를 갖는 단순화된 퍼지 PID 제어기의 제안과 안정도 분석)

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.807-815
    • /
    • 2004
  • This paper describes the design principle of a fuzzy PID controller with fixed parameters, proposes the simulified form of a fuzzy PID controller to increase the computational efficiency and analyzes stability of a proposed fuzzy PID controller. After a detailed stability analysis using ‘small gain theorem’, a simple and practical sufficient condition for the BIBO stability of the overall feedback control system is derived. The derived stability condition offers a calculation method to obtain parameters of a fuzzy PID controller from parameters of a stable PID controller. Finally several computer simulations are executed to confirm the effectiveness of the fuzzy PID controller with fixed parameters.

The Design Self Compensated PID Controller and The Application of Magnetic Levitation System (신경회로망을 이용한 자기 보상 PID 제어기 설계와 자기부양시스템 적용 실험)

  • Kim, Hee-Sun;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.499-501
    • /
    • 1998
  • In this paper, we present a self-compensating PID controller which consists of a conventional PID controller that controls the linear components and a neural controller that controls the higher order and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the control errors through the neuro-controller. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

Development of Control Method for Improving Energy Efficiency of Unmanned Underwater Gliders (무인 수중글라이더의 에너지 효율 개선을 위한 제어방법 개발)

  • La, Seung-kyu;Ko, Sung-hyup;Ji, Dae-hyeong;Chon, Seung-jae;Jeong, Seong-hoon;Choi, Hyeung-sik;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2022
  • In this paper, unmanned underwater glider was designed for high-depth operation and adopted a bladder-type buoyancy controller for improving battery efficiency, and the motion controller controls the pitch angle by moving the internal mass battery. To improve the energy efficiency of the unmanned underwater glider, a layered PID controller that performs control by section was designed. Simulation program including 6-DOF motion equations and hydrodynamics coefficients of an unmanned underwater glider is constructed using Matlab/Simulink program. Control methods such as PID controller, sliding mode controller and layered PID controller were applied to the simulator to compare the dynamics performance and energy efficiency. As a result, the layered PID controller showed improved control performance compared to other controllers and improved energy efficiency of approximately 7.2% compared to PID controller.

Design of PID-Expert hybrid Controllers (PID-전문가 복합형 제어기 설계)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.103-108
    • /
    • 2009
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. In this paper, PID-Expert hybrid control method for motor control system as a compensation method solving this problem is presented. If PID control system is stable, the Expert controller is idle. if the error hits the boundary of the constraint, the Expert controller begins operation to force the error back to the constraint set. The disturbance effect decrease remarkably, robust speed control of DC motor using PID-Expert Hybrid controller is demonstrated by the simulation.

  • PDF