• Title/Summary/Keyword: PID controller PID

Search Result 1,747, Processing Time 0.029 seconds

A Design of 2 DOF PID Controller Using Performance Index (평가지표를 이용한 2자유도 PID제어기 설계)

  • 유항열;이정국;이금원;이준모
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • PID control has been well used for several decades. For PID algorithms, some tuning methods are used for selecting PID parameters and with these selected parameters, PID control system is designed. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that the designed control system meets the some specifications. For 2 DOF PID controller design this paper presents a linear combinational type of performance indices constituting of index for robust performance, which is obtained by h infinity norm of a weighted complementary sensitivity function, including other time domain indices such as error, energy and changing rate of control input. By numerical methods, the optimal 2 DOF PID parameters are obtained. Therefore various types of 2 degree of freedom PID controllers such as I-PD controller are used so that this two degree of freedom PID controllers may give more desirable output characteristics. Simulations are done with MATLAB m file and mdl files.

  • PDF

Neural Network Based PID Control for Pneumatic NC Axes (공압 NC축의 신경회로망 결합형 PID 제어)

  • Park, Lae-Seo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.105-111
    • /
    • 2006
  • This paper describes a Neural Network based PID control scheme for pneumatic NC axes. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional PID controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. The gains of PID controller are determined using a self tuning scheme. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PID control.

PID Control of Unstable Processes with Time Delay (시간지연을 갖는 불안정한 시스템의 PID 제어)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jung-Ki;Ryu, Ki-Tak;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.721-728
    • /
    • 2009
  • PID control is widely used to control stable processes, however, PID control for unstable processes is less common. In this paper, systematic tuning methods are derived to tune the PID controller for unstable FOPTD(Forst Order Plus Time Delay) processes. The proposed PID controllers for set-point tracking and disturbance rejection problem are tuned based on minimizing the performance indexes (IAE, ISE, ITAE) using a real-coded genetic algorithm. Simulation example is given to illustrate the set-point tracking and disturbance rejection performance of the proposed method.

Optimal Condition Gain Estimation of PID Controller using Neural Networks (신경망을 이용한 PID 제어기의 제어 사양 최적의 이득값 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.717-719
    • /
    • 2003
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident.

  • PDF

Servo Control of Hydraulic Motor using Artificial Intelligence (인공지능을 이용한 유압모터의 서보제어)

  • 신위재;허태욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.49-54
    • /
    • 2003
  • In this paper, we propose a controller with the self-organizing neural network compensator for compensating PID controller's response. PID controller has simple design method but needs a lot of trials and errors to determine coefficients. A neural network control method does not have optimal structure as the parameters are pre-specified by designers. In this paper, to solve this problem, we use a self-organizing neural network which has Back Propagation Network algorithm using a Gaussian Potential Function as an activation function of hidden layer nodes for compensating PID controller's output. Self-Organizing Neural Network's learning is proceeded by Gaussian Function's Mean, Variance and number which are automatically adjusted. As the results of simulation through the second order plant, we confirmed that the proposed controller get a good response compare with a PID controller. And we implemented the of controller performance hydraulic servo motor system using the DSP processor. Then we observed an experimental results.

  • PDF

Quadrotor altitude control with experimental data-based PID controller (실험 데이터 기반의 PID제어기를 이용한 쿼드로터의 고도제어)

  • Ho-Sung Lee;Ji-Sun Park;Ho-Lim Choi
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.136-144
    • /
    • 2024
  • In this paper, we propose a PID controller for altitude control of quadrotor system with experimental analysis. The Routh-Hurwitz test is applied to analyze the system to which our proposed controller is applied. We also summarize experimental data in which the gain values of kP, kI, and kD are changed using MATLAB and Simulink based on mathematical modeling of the quadrotor system. Based on the summarized experimental data, we analyze the effect of changes in each gain values (kP, kI, kD) of PID controller on altitude control of quadrotor, and present an algorithm for tuning the PID controller gain values. The PID controller with the proposed algorithm is applied to AR.Drone system, subsequently and result are verifised through experiments.

Design of Parallel Type Fuzzy Controller Using Model Reference Fuzzy Algorithm (모델참조 퍼지 알고리즘을 이용한 병렬형 퍼지제어기 설계)

  • 추연규;김병철;이광석;김현덕
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.888-892
    • /
    • 2002
  • In this paper, parallel type fuzzy controller is designed by using a hybrid connected type fuzzy-PID controller and a model reference fuzzy controller. The first controller that consists a fuzzy-PI and a fuzzy-PD making a hybrid type fuzzy-PID controller plays a role as firstly reaching stable responses and secondly overcoming disturbance in plants. The second controller, model reference fuzzy controller, plays a role as reaching faster responses than other controllers. We have confirmed that we get rapid and stable responses and the controller overcomes disturbance in a short time when there happens disturbance by using parallel type fuzzy controller applying to DC motor in this paper.

  • PDF

A study on the optimal tuning of the hydraulic motion driver parameter by using RCGA (유압 모션 제어기의 최적 제어인자 튜닝에 관한 연구)

  • Shin, Suk-Shin;Noh, Jong-Ho;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • In this study, 2 degree of freedom PID controller is added to the conventional feed-forward controller for the purpose of improving its limitations such as set-point of tracking performance and disturbance suppression performance in the conventional PID controller. And the controller parameters optimization as a Real Coded Genetic Algorithm (RCGA) is used. Simulation and experiments verify the performance of the controller.

Design of Steering Controller of AGV using Cell Mediate Immune Algorithm (세포성 면역 알고리즘을 이용한 AGV의 조향 제어기 설계에 관한 연구)

  • Lee, Yeong-Jin;Lee, Jin-U;Lee, Gwon-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.827-836
    • /
    • 2001
  • The PID controller has been widely applied to the most control systems because of its simple structure and east designing. One of the important points to design the PID control system is to tune the approximate control parameters for the given target system. To find the PID parameters using Ziegler Nichols(ZN) method needs a lot of experience and experiments to ensure the optimal performance. In this paper, CMIA(Cell Mediated Immune Algorithm) controller is proposed to drive the autonomous guided vehicle (AGV) more effectively. The proposed controller is based on specific immune responses of the biological immune system which is the cell mediated immunity. To verify the performance of the proposed CMIA controller, some experiments for the control of steering and speed of that AGV are performed. The tracking error of the AGV is mainly investigated for this purpose. As a result, the capability of realization and reliableness are proved by comparing the response characteristics of the proposed CMIA controllers with those of the conventional PID and NNPID(Neural Network PID) controller.

  • PDF

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique (신경회로망 예측 PID 제어법을 이용한 컨테이너 크레인의 자동주행제어)

  • Suh Jin Ho;Lee Jin Woo;Lee Young Jin;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The experimental results for an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications