• Title/Summary/Keyword: PID control gain

Search Result 269, Processing Time 0.028 seconds

A Study on the Active Vibration Isolator PID Auto-tuning Using PSO Algorithm (PSO알고리즘을 활용한 능동 제진 시스템 PID 오토 튜닝에 관한 연구)

  • An, Il Kyun;Huh, Heon;Kim, Hyo-Young;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.59-64
    • /
    • 2022
  • Vibration is one of the factors that degrades the performance of equipment and measurement equipment used in high-tech industries such as semiconductors and display. The vibration isolator is classified into passive type and active type. The passive vibration isolator has the weakness of insufficient vibration isolation performance in the low frequency band, so an active vibration control system that can overcome these problems is used recently. In this paper, PID controller is used to control the active vibration isolator. Methods for setting the gain of the PID controller include the Zeigler-Nichols method, the pole placement method. These methods have the disadvantage of requiring a lot of time or knowing the system model accurately. This paper proposes the gain auto tuning method of the active vibration isolator applied with the PSO algorithm, which is an optimization algorithm that is easy to implement and has stable convergence performance with low calculations. It is expected that it will be possible to improve vibration isolation performance and reduce the time required for gain tuning by applying the proposed PSO algorithm to the active vibration isolator.

Quadrotor Attitude Stabilization by Using PID Controller (PID 제어기를 이용한 쿼드로터 자세 안정화)

  • Kim, Yongyoung;Shin, Junhee;Lee, Sunik;Lee, Hyounggon;Lim, Hyunmin;Kim, Kwangjin;Lee, Sangchul
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • Quadrotor is an aircraft which is possible in Vertical Take-off and Landing(VTOL). This aircraft can not only be created as an Unmanned Aerial Vehicle(UAV), but also can be easily used in various fields because of its simplicity of construction. This study is mainly conducted with two main purposes. The first goal is designing the quadrotor focusing on the lightweight and protecting the airframe. The second purpose is stabilizing the quadrotor's attitude by using the PID controller. MATLAB simulation is performed for obtaining PID gain based on equations of motion. We used the compensation filter technique for the calibration of sensor data. PID gain has been drawn out based on the MATLAB simulation. The efficiency of the attitude control is improved by calibration of sensor data.

  • PDF

Design of a decoupled PID controller via MOCS for seismic control of smart structures

  • Etedali, Sadegh;Tavakoli, Saeed;Sohrabi, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1067-1087
    • /
    • 2016
  • In this paper, a decoupled proportional-integral-derivative (PID) control approach for seismic control of smart structures is presented. First, the state space equation of a structure is transformed into modal coordinates and parameters of the modal PID control are separately designed in a reduced modal space. Then, the feedback gain matrix of the controller is obtained based on the contribution of modal responses to the structural responses. The performance of the controller is investigated to adjust control force of piezoelectric friction dampers (PFDs) in a benchmark base isolated building. In order to tune the modal feedback gain of the controller, a suitable trade-off among the conflicting objectives, i.e., the reduction of maximum modal base displacement and the maximum modal floor acceleration of the smart base isolated structure, as well as the maximum modal control force, is created using a multi-objective cuckoo search (MOCS) algorithm. In terms of reduction of maximum base displacement and story acceleration, numerical simulations show that the proposed method performs better than other reported controllers in the literature. Moreover, simulation results show that the PFDs are able to efficiently dissipate the input excitation energy and reduce the damage energy of the structure. Overall, the proposed control strategy provides a simple strategy to tune the control forces and reduces the number of sensors of the control system to the number of controlled stories.

PID Controller and Derivative-feedback Gain Design of the Direct-drive Servo Valve Using the Root Locus and Manual Tuning (근궤적과 수동 조정에 의한 직접 구동형 서보밸브의 PID 제어기 및 미분피드백 이득 설계)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • The direct-drive servo valve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the dc motor. Since the DDV structure is simple, it is less expensive, more reliable, and offers a reduced internal leakage and a reduced sensitivity to fluid contamination. The control system of the DDV is highly nonlinear due to a current limiter, a voltage limiter, and the flow-force effect on the spool motion. The shape of the step response of the DDV-control system varies considerably according to the magnitudes of the step input and the load pressure. The system-design requirements mean that the overshoots should be less than 20%, and the errors at 0.02s should be less than 2%, regardless of the reference-step input sizes of 1V and 5V and the load-pressure magnitudes of 0MPa and 20.7MPa. To satisfy the system-design requirements, the PID-controller parameters of $K_c$, $T_i$ and $T_d$, and the derivative-feedback gain of $K_{der}$ are designed using the root locus and manual tuning.

Design of a New 2-DOF PID Controller for Gun-san Gas Turbine Generation Plant

  • Kim, Dong-Hwa
    • Journal of KIEE
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2000
  • The Main role of the gas turbine lies in the utilization of waste heat which may be found in exhaust gases from the gas turbine or at some other points of the process to produce additional electricity. Up to date, the PID controller has been used to operate under such difficult conditions, but since the gain of PID controller manually experience. In this paper parameter separation type 2-DOF PID controllers are proposed based on the gas turbine control system. Gas turbine transfer function is achieved from operation data of Gun-san gas turbine and Tuning algorithms of parameter separation type 2-DOF PID controller is ANFIS. Results represents satisfactory response.

  • PDF

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

A control algorithm for driving stability improvement of in-wheel motors vehicle (인휠모터 차량의 주행 안정화 제어 알고리즘 연구)

  • Choe, Seung-Hoe;Kim, Jin-Sung;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, a control algorithm for the improvement of yaw and velocity stability of electrical vehicle with two or four in-wheel motors is proposed. The vehicle is modeled with independently operative in-wheel motor wheels. Different frictions on the wheels are regarded as disturbances, which causes driving instability. In this situation the proposed algorithm enables stabilizing the yaw motion and velocity of vehicle simultaneously. The proposed PID controller is composed with two techniques, which enhance the disturbance reject and point tracking performances. One is nonlinear gain function and the other one is improved integral controller operating as time based weight function. Simulation is conducted to reveal its efficient performance.

  • PDF

A study on the Robust Control Cain Selection Scheme of a High-Speed/High-Accuracy position Control System using Taguchi Method (다꾸지 방법을 이용한 고속/정밀 위치제어시스템의 강인한 제어게인 선정에 관한 연구)

  • 신호준;채호철;윤석찬;장진희;한창수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.521-527
    • /
    • 2002
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For the modeling elements, the system is divided into electrical system, magnetic system, and mechanical system. Each system is modeled by using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to evaluate the more robust PID gain combinations than conventional one. This study makes use of an L18 array with three parameters varied on three levels. Computer simulations and experimental results show that the designed PID controller provides more improved signal to noise ratio and reduced sensitivity than the conventional PID controller.

  • PDF

Fuzzy Hybrid Control of Rhino XR-2 Robot (Rhino XR-2 로보트의 퍼지 혼성 제어)

  • Byun, Dae-Yeal;Sung, Hong-Suk;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.299-303
    • /
    • 1993
  • There can be two methods in control systems: one is to use a linear controller, the other is to use a nonlinear controller. The PID controller and the fuzzy controller can be said to belong the linear and the nonlinear controller respectively. In this paper, a new hybrid controller which is consist of the linear PID controller of which the gain is tuned and the nonlinear self tuning fuzzy controller is proposed. In the PID controller, an algorithm which parameterizes the proportional, the intergral, and the derivative gain as a single parameter is used to improve the performance of the PID controller. In the self tuning fuzzy controller, an algorithm which changes the shape of the triangle membership function and changes the scaling factor which is multiplied to the error and the error change. The evaluation of the performance of the suggested algorithm is carried on by the simulation for the Rhino XH-2 robot manipulator with 5 links revolute joints.

  • PDF

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.