• Title/Summary/Keyword: PID (Proportional-Integral-Derivative control)

Search Result 160, Processing Time 0.03 seconds

PID $\times$ (n-1) Stage PD Controller for SISO Systems

  • Prasit, Julseeewong;Prapart, Ukakimaparn;Thanit, Trisuwannawat;Anuchit, Jaruvanawat;Kitti, Tirasesth
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.407-412
    • /
    • 1998
  • A design technique based on the root locus approach for the SISO (Single-Input Single-Output) systems using PID (Proportional-Integral-Derivative) ${\times}$ (n-1) stage PD as a controller for the n$\^$th/ order plant is presented. The controller is designed based on transient and steady state response specifications. This controller can be used instead of a conventional PID controller. The overall system is approximated as a stable and robust second order system. The desired performances are achieved by increase the gain of the controller. In addition, the controller gain can be adjusted to obtain faster response with a little overshoot. The simulation results show the merits of this approach.

  • PDF

A Study of DC Motor Speed Control By tms-320C32 Based (TMS-320C32기반에 의한 DC 모터 속도제어의 연구)

  • Jeong, S.H.;Kwon, S.M.;Cheon, J.M.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2218-2220
    • /
    • 2003
  • 현대 산업현장에서 80%이상 사용되는 PID(proportional integral derivative) 제어기는 제어성, 적응성, 제어이득 조정 등의 특정이 있어나 제어 대상에 대한 PID 제어 계수를 경험적 방법인 수동으로 동조해야하는 문제점이 있다. 이를 개선하기 위해 본 논문에서 PID제어기의 최적 자동동조를 위한 릴레이 동조 방법을 제안한다. 기존의 한계감도법과 과도응답 법으로 초기계수를 결정하는 방법보다 유연성과 적용성이 높고, 이를 마이크로프로세서(DSP : TMS-320C32)에 적용하여 소프트웨어적으로 릴레이의 기능이 이루어지도록 설계했다. 이는 Ziegler-Nichols 계수조정법이 갖는 적용대상의 제약성을 극복한 방법이며, 릴레이에 의해 출력을 강제 진동시키고 출력의 진폭과 주기를 이용하여 PID 계수를 조정하고, 또 상대안정성의 척도인 위상여유를 고려하므로 시스템의 상대안정성과 견실성을 향상시킬 수 있음을 확인하였다.

  • PDF

Fuzzy PD+I Control Method for Two-wheel Balancing Mobile Robot (퍼지 PD+I 제어 방식을 적용한 Two-wheel Balancing Mobile Robot)

  • Eom, Ki-Hwan;Lee, Kyu-Yun;Lee, Hyun-Kwan;Kim, Joo-Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • A two-wheel balancing vehicle, which helps people moving freely and fast, and is applied from inverted pendulum system, has been widely researched and developed, and some products are came into a market in actuality. Until now, the two-wheel balancing vehicles developed have chosen the general PID control method. In this paper, we propose a new control method to improve a control capacity for a two-wheeled balancing vehicle for human transportation. The proposed method is the fuzzy PD+I control that is one of the improved PID control, and it contains a 2input-1output fuzzy system. This fuzzy system processes signals from proportional and derivative controller, and the fuzzy output signal generates the final output by summing up integral signal. The non-linearity of the fuzzy system makes an optimal output control signal by changing weight of the proportional signal and the derivative signal in process of time. We have simulated the fuzzy PD+I control system and experimented by implementing the two-wheel balancing mobile robot to verify the advantages of the proposed fuzzy PD+I control method in comparison with general PID control. As the results of simulation and experimentation, the proposed fuzzy PD+I control method has better control performance than general PID in this system and improves it.

Robust Adaptive Voltage Control of Electric Generators for Ships (선박용 발전기 시스템의 강인 적응형 전압 제어)

  • Cho, Hyun Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.326-331
    • /
    • 2016
  • This paper presents a novel robust adaptive AC8B exciter system against synchronous generators for ships. A PID (proportional integral derivative) control framework, which is a part of the AC8B exciter system, is simply composed of nominal and auxiliary control configurations. For selecting these proper parameter values, the former is conventionally chosen based on the experience and knowledge of experts, and the latter is optimally estimated via a neural networks optimization procedure. Additionally, we propose an online parameter learning-based auxiliary control to practically cope with deterioration of control performance owing to uncertainty in electric generator systems. Such a control mechanism ensures the robustness and adaptability of an AC8B exciter to enhance control performance in real-time implementation. We carried out simulation experiments to test the reliability of the proposed robust adaptive AC8B exciter system and prove its superiority through a comparative study in which a conventional PID control-based AC8B exciter system is similarly applied to our simulation experiments under the same simulation scenarios.

Development of a Self-tuning Fuzzy-PID Controller for Water Level of Steam Generator (증기발생기 수위제어를 위한 자기동조 퍼지 PID 제어기 개발)

  • Han, Jin-Wook;Lee, Chang-Goo;Han, Hoo-Seuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1251-1258
    • /
    • 1999
  • The water level control of a steam generator in the unclear power plant is an important process. Most of the water level controllers of the actual plant are PID controllers. But they have limitations in appling for tracking the set point and getting rid of disturbances, so there are some defects to apply in the actual ground even though many research works represented the resolutions to solve it. In this paper, it is suggested that the established simple PID controller in low power has the ability to remove disturbances and trace the set-point, and then possesses the real-time self-tuning function according to the variety of moving peculiarity of a plant. This function realized by making use of fuzzy logic. PID parameters are formulated by a variable ${\alpha}$ and made it fluctuate by a fuzzy inference according to level error and level error change. This mechanism makes application of actual plant effective as well as taking advantage of improving the efficiency of water level controller by way of adding the function of self-tuning instead of replacing PID controller. The computer simulation of this scheme shows the improved performance compare to conventional PID controller.

  • PDF

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

MPC based path-following control of a quadcopter drone considering flight path and external disturbances in MATLAB/Simulink (MATLAB/Simulink 기반 주행 경로와 외란을 고려한 쿼드콥터 드론의 모델 예측 제어 기반 경로 주행 제어)

  • Soon-Jae Gwon;Gu-Min Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.472-477
    • /
    • 2023
  • In this paper, we proposes the use of Model Predictive Control (MPC) techniques to enable quadcopter drones to effectively follow paths and maintain flight safety even under dynamic external environments and disturbances. Through simulations conducted in MATLAB/Simulink, the performance of two controllers, PID and MPC, is compared in flight scenarios with disturbances. The proposed design method shows that the MPC controller, when compared to the PID controller, exhibits a difference in the Mean Squared Error between the intended flight path and the actual path of the quadcopter drone. This difference is 0.2 in performance under no disturbance, and it increases to 0.8 under disturbance, demonstrating the improved path following accuracy of the MPC controller.

A Study of Method and Algorithm for Stable Flight of Drone (드론의 안정화 비행을 위한 방법 및 알고리즘에 관한 연구)

  • Cha, Gyeong Hyeon;Sim, Isaac;Hong, Seung Gwan;Jung, Jun Hee;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • Unmaned Aerial Vehical(UAV) is a flight which is automatically flying by remote control on th ground. However UAV has an advantage of control that is easy, but has an disadvantage of not hovering. By comparison, quadcopter which is one of the UAV is easily operated. Also quadcopter has hovering function and high stability. In this paper, we propose stable flight algorithm associated PID(proportional-integral-derivative) control with fuzzy contorl to implement stable quadcopter system. After getting a positioning information of the drone, This proposed system is implemented for stable flight through flight attitude control using gyro and acceleration sensor. We also propose the flight mode system to hover drone with GPS sensor.

A Simulation Method of PID Tuning with Process Modeling in Operating Nuclear Power Plants (가동원전에서 공정모델링을 통한 PID 튜닝 시뮬레이션 방법)

  • Min, Moon-Gi;Jung, Chang-Gyu;Lee, Kwang-Hyun;Lee, Jae-Ki;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.290-294
    • /
    • 2014
  • PID(Proportional, Integral, Derivative) controller is the most popular process controllers in nuclear power plants. The optimized parameter setting of the process controller contributes to the stable operation and the efficiency of the operating nuclear power plants. PID parameter setting is tuned when new process control systems are installed or current process control systems are changed. When the nuclear plant is shut down, a lot of PID tuning methods such as the Trial and Error method, Ultimate Oscillation method operation, Ziegler-Nichols method, frequency method are used to tune the PID values. But inadequate PID parameter setting can be the cause of the unstable process of the operating nuclear power plant. Therefore the results of PID parameter setting should be simulated, optimized and finally verified. This paper introduces the simulation method of PID tuning to optimize the PID parameter setting and confirms them of the actual PID controller in the operating nuclear power plants. The simulation method provides the accurate process modeling and optimized PID parameter setting of the multi-loop control process in particular.