• Title/Summary/Keyword: PIC-DSMC

Search Result 3, Processing Time 0.018 seconds

Numerical Simulation of an Electric Thruster Plume Behavior Using the PIC-DSMC Method (PIC-DSMC 방법을 이용한 전기추력기 플룸 해석)

  • Kang, Sang Hun;Jun, Eunji
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • To develop technologies for the stable operation of electric propulsion systems, the exhaust plume behavior of electric thrusters was studied using PIC-DSMC(particle-in-cell and direct simulation Monte Carlo). For the numerical analysis, the Simple Electron Fluid Model using Boltzmann relation was employed, and the charge and momentum exchanges due to atom-ion collisions were considered. The results of this study agreed with the plasma potentials measured experimentally. Near the thruster exit, active collisions among particles and charge exchanges created slow ions and fast atoms, which were expected to significantly affect the trajectory and velocity of the thruster exhaust plume.

Numerical Analysis of Anode Sheath Structure Shift in an Anode-layer Type Hall Thruster

  • Yokota, Shigeru;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.602-605
    • /
    • 2008
  • The anode sheath structure in the hollow anode of an anode-layer type Hall thruster was numerically computed using a fully kinetic 2D3V Particle-in-Cell and Direct Simulation Monte Carlo(PIC-DSMC) code. By treating both ions and electrons as particles, anode surface region, which is electrically non-neutral, was analyzed. In order to analyze in detail, the calculation code was parallelized using Message Passing Interface (MPI). The code successfully simulated the discharge current oscillation. In the low magnetic induction case, ion sheath appears in the anode surface because ionization is enough to maintain the plasma occurs in the anode hollow. As the magnetic induction increases, main ionization region move to outside of the anode. At the same time, anode sheath voltage decreases. In the high magnetic induction case, electron sheath appears on the anode surface periodically because the ionization occurs mainly in the discharge channel. This anode sheath condition shift can be explained using the simple sheath model.

  • PDF

Effect of Sheath Structure on Operating Stability in an Anode Layer Thruster

  • Yasui, Shinsuke;Yamamoto, Naoji;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.245-250
    • /
    • 2004
  • The discharge current oscillation has been measured for various hollow anode widths and its axial positions using a 1㎾-class anode layer hall thruster. As a result, there were thresholds of magnetic flux density for stable discharge. The plasma structure inside the hollow anode was numerically analyzed using the fully kinetic 2D3V Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods. The results reproduced both stable and unstable operation modes. In the stable operation case, which corresponds to the case with low magnetic flux, the plasma penetrated into the hollow anode deeper than the case with higher magnetic flux density case. This suggests that comparably large substantial anode area should contribute to stable operation.

  • PDF