• Title/Summary/Keyword: PI3 Kinase

Search Result 352, Processing Time 0.034 seconds

Ameliorative Effect of Persicaria Poliata Etract through the Rgulation of AP-1, PI3K/Akt and MAPK Sgnaling Mlecules in UVB-Iradiated HaCaT Clls (HaCaT 세포에서 며느리 배꼽 추출물의 AP-1, PI3K/Akt 및 MAPK 활성 조절을 통한 광손상 억제 효과)

  • Hyun-Seo Yoon;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Purpose : Skin is the primary barrier to protect the body from various exogenous factors. Among them, UVB exposure can cause the induction of not only excessive inflammatory responses but also the degradation of extracellular matrix (ECM), including collagen and elastin. This study tried to investigate the ameliorative effect of Persicaria perfoliata ethanol extract (PPEE) on UVB-irradiated photodamage through the regulation of activator protein (AP)-1, phosphoinositide 3-kinase (PI3K)/Akt, and mitogen-activated protein kinase (MAPK) signaling molecules in HaCaT cells. Methods : The cytotoxicity of PPEE on HaCaT cells was evaluated by the WST-1 assay. The 80 mJ/cm2 of UVB (312 nm) was irradiated on HaCaT cells to induce the photodamage. Western blot analysis was conducted to investigate the protein expression levels of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and heme oxygenase (HO)-1 for ameliorative status by PPEE treatment in UVB-exposed HaCaT cells. In addition, the activated status of the inflammatory transcription factor, AP-1, as well as upstream signaling molecules, PI3K/Akt, and MAPK, were also evaluated by Western blot analysis. Results : Any cytotoxic effect was not induced at the concentration up to 200 ㎍/ml by PPEE treatment. Protein expression levels of COX-2 and MMP-9 were significantly down- and up-regulated by PPEE treatment. The inflammatory transcription factor AP-1, stimulated by UVB irradiation, was also significantly attenuated by PPEE treatment. The phosphorylated status of PI3K/Akt and MAPK were mitigated by PPEE treatment in UVB-exposed HaCaT cells. Moreover, PPEE treatment potently accelerated the expression of HO-1 and its transcription factor, nuclear factor-erythroid 2-related factor (Nrf)2, which is known for its anti-inflammatory activity. Conclusion : Consequently, PPEE treatment significantly regulated COX-2 and MMP-9 expressions in UVB-irradiated HaCaT cells. The inflammatory transcription factor AP-1, along with upstream signaling molecules PI3K/Akt and MAPKs, were also attenuated by PPEE treatment in UVB-exposed HaCaT cells. Additionally, PPEE treatment exaggerated HO-1 expression and Nrf2 activation, which might have contributed to the anti-inflammatory activity of PPEE. These results indicate that PPEE could be a candidate for attenuating UVB-induced photodamage in human skin.

Lysophosphatidic Acid Inhibits Nitric Oxide-induced Apoptosis via p70S6kinase Pathway in Rabbit Articular Chondrocytes

  • Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.349-353
    • /
    • 2009
  • Lysophosphatidic Acid (LPA) is a bioactive lysophospholipid that is a potent signaling molecule able to provoke a variety of cellular responses in many cell types such as differentiation, inflammation and apoptosis. In this study, we have investigated the effect of LPA on Nitric oxide (NO)-induced apoptosis in rabbit articular chondrocytes. LPA dramatically reduced NO induced apoptosis of chondrocytes determined by phase contrast microscope and MTT assay. When chondrocytes alone treated with LPA, LPA induced phosphorylation of p70S6kinase, a serine/threonine kinase that acts downstream of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphoinositide-dependent kinase-1 (PDK-1) in the PI3 kinase pathway, dose-dependently detected by Western blot analysis. Phosphorylation of p70S6k with LPA was reduced expression of p53 in NO-induced apoptosis of chondrocytes. Also, inhibition of p70S6kinase with rapamycin was enhanced expression of p53 in chondrocytes. Our findings collectively suggest that LPA regulates NO induced apoptosis through p70S6kinase pathway in rabbit articular chondrocytes.

  • PDF

Inhibitory Effects of Dithiolo-thione Derivative SWU-20009 on Akt Activity (Dithiolo-thione 계열 유도체 SWU-20009의 Akt활성 저해 효과)

  • 고종희;연승우;이홍섭;김태용;노동윤;신경순;홍순광;강상순
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.105-110
    • /
    • 2004
  • Akt (or Protein Kinase B; PKB) is a serine/threonine kinase and is activated by phosphoinositide 3-kinase (PI3K) pathway. Recent evidence indicates that the abnormal activities or expression of Akt is closely associated with cancer, diabetes and neuro-degenerative diseases. These findings mean that Akt is likely to be a new therapeutic target for the treatment of disease. Here, we screened the effects of dithiolo-dithione derivatives such as SWU-20004, SWU-20009 and SWU-20025 on Akt activities. Among these compounds, only SWU-20009 (2-Thioxo-[1,3]dithiolo[4,5- $\beta$][1,4]dithiine-5,6-dicarboxylic acid dimethyl ester) inhibited the growth of KATOIII cell at micromolar range of concentration. Further investigation also revealed that SWU-20009 inhibited cellular Akt activity and induced apoptotic cell death.

C/EBP$\beta$ and Nrf2-Mediated GSTA2 Induction by $\alpha$-Lipoic acid, an Insulin-Sensitizing Agent that has Antioxidant and Prooxidant Activities

  • Ki, Sung-Hwan;Cho, Il-Je;Kim, Sang-Geon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.82.1-82.1
    • /
    • 2003
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by enhanced expression of phase II detoxifying genes including glutathione S-transferases. ${\alpha}$-Lipoic acid, which exerts prooxidant or antioxidant activities, has been shown to activate the insulin signaling pathway and thus to induce insulin-like actions via PI3-kinase and Akt. Our previous studies have shown that PI3-kinase plays an essential role in Nrf2-or C/EBP${\beta}$-mediated glutathione S-transferase A2 (GSTA2) induction. (omitted)

  • PDF

Enhancing Effect of Extracts of Phellodendri Cortex on Glucose Uptake in Normal and Insulin-resistant 3T3-L1 Adipocytes (3T3-L1 지방세포에서 황백 추출물의 Glucose Uptake 촉진 및 인슐린 저항성 개선 활성)

  • Kim, So-Hui;Shin, Eun-Jung;Hyun, Chang-Kee
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.4 s.143
    • /
    • pp.291-298
    • /
    • 2005
  • Anti-hyperglycemic effects of 17 medicinal plants that have been used for ameliorating diabetes in oriental medicine were evaluated using glucose transport assay in 3T3-L1 adipocytes. Higher activities were obtained by treating water or alcohol extract of Phellodendri Cortex (PC), which showed enhancing effects both on basal and insulin-stimulated glucose uptake. The latter effect of PC was completely inhibited by wortmannin, a specific inhibitor for phosphatidyl inositol 3-kinase (PI 3-kinase), but not affected by SB203580, A specific inhibitor for p38 mitogen-activatedprotein kinase(MAPK). Genistein, an inhibitor for tyrosine kinases, abolished the PC effects completely. Treatment of vanadate, an inhibitor for tyrosine phosphatases, together with PC showed no significant synergic enhancement in glucose uptake. The results of inhibitors associated with insulin signaling pathway indicated that extracts of PC enhance glucose uptake by PI-3 kinase activation which is an upstream event for GLUT4 translocation. Antidiabetic effects of PC extract might be also due to enhanced tyrosine phosphorylation and reduced tyrosine dephosphorylation. In addition, PC accelerated insulin-stimulated glucose uptake in insulin-resistant cells, recovering the uptake level close to that of normal cells. These findings may offer a new way to utilize extracts of PC as novel anti-hyperglycemic agents.

Ginsenoside Rk3 suppresses U46619-induced human platelets aggregation through regulation of cAMP and PI3K/Akt pathway (U46619 유도의 사람 혈소판에서 cAMP 및 P I3K/Akt 경로의 조절을 통한 Ginsenoside Rk3의 응집억제 효과)

  • Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.221-226
    • /
    • 2023
  • Proper activation and aggregation of platelets are necessary, but excessive or abnormal aggregation can lead to cardiovascular diseases such as stroke, thrombosis, and atherosclerosis. Therefore, identifying a substance that can regulate or inhibit platelet aggregation is important for preventing and treating these diseases. Several studies have shown that certain ginsenoside compounds in Panax ginseng can inhibit platelet aggregation. Among these compounds, Rk3 (G-Rk3) from Panax ginseng needs to be further explored in order to reveal the mechanisms of action during inhibition. G-Rk3 significantly increased amounts of cyclic adenosine monophosphate (cAMP) and led to significant phosphorylation of cAMP-dependent kinase substrates vasodilator-stimulated phosphoprotein and inositol 1,4,5-trisphosphate receptor. Furthermore, the effect of G-Rk3 extended to the inhibition of PI3K/Akt phosphorylation resulting in the reduced secretion of intracellular granules. Ultimately, G-Rk3 effectively inhibited platelet aggregation. Therefore, we suggest G-Rk3's potential as a prophylactic or therapeutic agent for cardiovascular diseases caused by faulty platelet aggregation.

  • PDF

The Herbal Formula C-DM3 Improves the Changes of Diabetes-Related Biomarkers in High-Fat Diet-Induced Obese Mice through Regulation of the IRS1/PI3K/AKT and AMPK Signaling Pathways in the Liver and Pancreas (고지방식이를 통해 비만이 유발된 마우스에서 C-DM3 복합추출물의 항비만 및 항당뇨 효능 연구)

  • Yoon Yong Choi;Chenzi Lyu;Tong Zhang;Haifeng Shao;Xianglong Meng;Chu Duc Thanh;Jong-Seong Kang;Hyo Won Jung;Yong-Ki Park
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.24 no.1
    • /
    • pp.25-40
    • /
    • 2024
  • Objectives: In the present study, we investigated the effects of clean-diabetes mellitus 3 (C-DM3), a herbal formula with Trichosanthis Radix, Coptidis Rhizoma, Crataegi Fructus, and Cinnamomi Cortex, on the pathological and serological symptoms of diabetes and its related molecular mechanisms in diet-induced obese mice. Methods: We prepared an obese mouse model using a high-fat diet for 8 weeks and then administered the C-DM3 extract for 4 weeks. The changes of pathological and serological biomarkers for diabetes assessment were measured in the mice and histological changes were observed in the liver and pancreas tissues. We also identified the main compounds in the C-DM3 extract using high pressure liquid chromatography (HPLC) and analyzed the molecular mechanism of the disease condition by network pharmacological analysis. Results: In the in vivo, the administration of C-DM extract to obese mice significantly reduced body weight gain, fatty liver symptoms, and muscle loss, and decreased the levels of fasting blood glucose, insulin, aspertate aminotransferase, triglycerides, and low-density lipoprotein-cholesterol. In addition, C-DM extract significantly increased the phosphorylation of insulin receptor substrate 1, protein kinase b (AKT), phosphoinositide 3-kinase (PI3K), adenosine monophosphate-activated protein kinase, and glucose transporter 4 in all pancreatic and liver tissues, with inhibition of histopathological changes in obese mice. HPLC analysis identified hyperoside, berberine, epiberberine, columbamin, coptisine, coumarin, jatrorrhizine, and citric acid as the main compounds. In the network pharmacological analysis, the molecular targets of C-DM3 extract on obesity and diabetes were shown as the insulin, AKT, PI3K, and mitogen-activated protein kinase pathways with the regulation of inflammatory molecules interleukin 6 (IL-6), jun proto-oncogene, and IL-1β, which matched our in vivo targets. Conclusions: Based on these results, C-DM3 extract is expected to be effective in improving obesity and preventing diabetic progression.

THE ESSENTIAL ROLE OF PHOSPHATIDYLINOSITOL 3-KINASE IN THE INDUCTION OF MICROSOMAL EPOXIDE HYDROLASE

  • Kang, Keon-Wook;Ryu, Ji-Hwa;Kim, Sang-Geon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.140-140
    • /
    • 2001
  • We have shown that PI3-kinase played an essential role in the ARE-mediated rGSTA2 induction by oxidative stress following sulfur amino acid deprivation (SAAD) (Kang et al., Mol. Pharmacol., 2000). Microsomal epoxide hydrolase (mEH), which detoxifies a variety of epoxide intermediates produced from various xenobiotics, is inducible by oxidative stress.(omitted)

  • PDF

Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

  • Kim, Dae Jung;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Park, Jae Bong;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.180-189
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS: Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha ($HNF-1{\alpha}$), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta ($GSK-3{\beta}$) expression levels. The ${\alpha}-glucosidase$ inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS: CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through $HNF-1{\alpha}$ expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and $GSK-3{\beta}$, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of ${\alpha}-glucosidase$ inhibitory activity than that from acarbose. CONCLUSION: CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment.