• Title/Summary/Keyword: PI-PD

Search Result 172, Processing Time 0.016 seconds

Brief low [Mg2+]o-induced Ca2+ spikes inhibit subsequent prolonged exposure-induced excitotoxicity in cultured rat hippocampal neurons

  • Kim, Hee Jung;Yang, Ji Seon;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2016
  • Reducing $[Mg^{2+}]_o$ to 0.1 mM can evoke repetitive $[Ca^{2+}]_i$ spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM $[Mg^{2+}]_o$ are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether $Ca^{2+}$ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM $[Mg^{2+}]_o$ for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type $Ca^{2+}$ channel antagonist nimodipine, which blocked 0.1 mM $[Mg^{2+}]_o$-induced $[Ca^{2+}]_i$ spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the $[Ca^{2+}]_i$ spikes. The intracellular $Ca^{2+}$ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. While $G{\ddot{o}}6976$, a specific inhibitor of $PKC{\alpha}$ had no effect on the tolerance, both the $PKC{\varepsilon}$ translocation inhibitor and the $PKC{\zeta}$ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low $[Mg^{2+}]_o$ preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the $[Ca^{2+}]_i$ spike-induced activation of $PKC{\varepsilon}$ and $PKC{\xi}$, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.