• Title/Summary/Keyword: PI-Fuzzy Controller

Search Result 303, Processing Time 0.025 seconds

Design of Speed Controller of an Induction Motor Based on Fuzzy-Neural Network (퍼지-신경회로망에 근거한 유도전동기 속도 제어기 설계)

  • Choi, Sung-Dae;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.282-284
    • /
    • 2006
  • Generally PI controller is used to control the speed of an induction motor. It has the good performance of speed control in case of adjusting the control parameters. But it occurred the problem to change the control parameters in the change of operation condition. In order to solve this problem, Fuzzy control or Artificial neural network is introduced in the speed control of an induction motor. However, Fuzzy control have the problems as the difficulties to change the membership function and fuzzy rule and the remaining error. Also Neural network has the problem as the difficulties to analyze the behavior of inner part. Therefore, the study on the combination of two controller is proceeded. In this paper, Speed controller of an induction motor based fuzzy-neural network is proposed and the speed control of an induction motor is performed using the proposed controller. Through the experiment, the fast response and good stability of the proposed speed controller is proved.

  • PDF

High Performance Control of IPMSM using AIPI Controller (AIPI 제어기를 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.225-227
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed artificial intelligent-PI(AIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

PD+I Fuzzy Controller Using Error-Accumulating Applying Factor (오차적분 적용계수를 이용한 PD+I 퍼지제어기)

  • Chun, Kyung-Han;Lee, Yun-Jung;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.193-198
    • /
    • 2002
  • In this paper, we Propose a PD+I fuzzy controller using an error-accumulating applying factor. In fuzzy control, analytical study was done formerly, in which fuzzy control can be classified by PD type and PI type, and also the study for getting merits of both types was done, too. But the mixed type has a complex structure and many parameters. The proposed fuzzy controller is 2-input 2-out-put and PD type fuzzy control is used as a basic structure. And the proposed controller annihilates a steady-state error and improves transient responses because of using the error-accumulating applying factor which is determined in the real time along the current state of controlled process. Futhermore it is easy to tune the system because of decreasing the number of scaling factors and the I type controller with resetting resolves the integral wind-up problem. Finally we apply the proposed scheme to various plants and show the performance betterment.

Improvement of Practical Control Method for Positioning Systems in the Presence of Actuator Saturation by Incorporating Takagi-Sugeno(TSK) Fuzzy Anti-reset Windup

  • Ibrahim, Tarig Faisal;;Salami, M.J.E.;Albagul, Abdulgani
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.975-980
    • /
    • 2004
  • Positioning system is widely used for many practical applications. This system requires a good controller to achieve high accuracy and fast response with simple and self-adjustable design. In order to satisfy the above requirements, a new practical controller for positioning systems, namely nominal characteristic trajectory following (NCTF) controller with PI compensator, has been proposed. However, the effect of actuator saturation can not be completely compensated for integrator windup when the object parameters vary. This paper presents a method to improve the NCTF controller by overcoming the problem of integrator windup by adopting a fuzzy system. The improvement of the NCTF controller is evaluated through simulation using a rotary positioning system. The simulation result has demonstrated the effectiveness of the compensated NCTF in overcoming the problem of integrator windup.

  • PDF

A Fuzzy Logic Controller for the Level Swell and Shrinkage of the Nuclear Steam Generators

  • Moon, Byung-Soo;Moon, Je-Sun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.260-265
    • /
    • 1995
  • Based on a thermohydraulic estimation of the level swell and shrinkage of the nuclear steam generators, a fuzzy logic controller is designed and tested to handle the problem of controlling the level swell and its restoration. The estimation is used to form an artificial system which is nearly the opposite of the level swell and shrinkage and a PD type controller is designed to control this system. This controller is added to a PI type ordinary fuzzy logic controller to form the proposed controller which is tested through various experiments on a scaled-down steam generator. It is found to perform efficiently so that the divergence of the level to a low limit can be avoided.

  • PDF

A Study on the self-tuning of the design variables and gains using Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 설계변수와 이득의 자기동조에 관한 연구)

  • Jang, Cheol-Su;Choe, Jeong-Won;O, Yeong-Seok;Chae, Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.395-407
    • /
    • 2006
  • 본 논문에서는 설계변수와 제어기 이득의 자기 동조를 사용하는 PI+D 제어기 설계에 대하여 기술한다. 사용된 퍼지 PI+D 제어기는 일반적인 연속 시간 선형 PI+D 제어기를 근사화하여 사용하였고, 퍼지화는 퍼지싱글톤으로, 비퍼지화는 간략화된 무게중심법을 사용하였다. 제안된 제어기는 제어대상이 비선형일 때 자기 동조 성능이 개선된다. 퍼지 PI+D 제어기가 적용되면, 퍼지추정 결과는 분리된 퍼지 변수로서 다른 작용 성분으로 계산되고, 그 결과는 설계변수에 해당하는 함수의 형태로 결정되어 제어이득을 결정한다. 따라서 제안된 방법은 빠른 속도 추정의 성능을 가지며, 퍼지 입력변수의 증가에도 쉽게 적용될 수 있고, 재생 오차를 줄이는 이점을 가진다. 이 제어기는 설계변수와 제어기 이득의 사용으로 보다 높은 효율성과 개선점을 가지고 있다.

  • PDF

A Design of Fuzzy PI Controller for Improving AE System of Mobile Digital Camera (모바일 디지털 카메라의 AE 시스템 개선을 위한 퍼지 PI 제어기 설계)

  • Cho, Sun-Ho;Kim, Dong-Han;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.786-791
    • /
    • 2009
  • Recently, digital camera module has been extensively utilized in mobile devices. The digital camera module should be smaller and lighter than digital still camera module to be used in mobile device. But, mobile camera can't get high quality image as good as the one of digital still camera due to the optical limitation of minimized module. Especially, AE system of mobile camera occurs excessive hunting and oscillation due to miniaturization of module. In this paper, improved AE algorithm which is applied fuzzy PI control is suggested to compensate this point.

Design of Fuzzy Control for High Performance of Induduction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 퍼지제어기의 설계)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1179-1181
    • /
    • 2001
  • For high performance induction motor drives such as mill drives, elevator, spindle drive, NC and so on, smart speed controls is usually required, that requires a precise current control. This paper is proposes design of fuzzy controller which makes use of the output voltage of the space vector PWM inverter. Also, proposes the performance fuzzy controller for high performance vector control of induction motor drive system. The performance of a fuzzy controller is compared with that of an PI controller in an internal loop. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

Force Control of Micro Robotic Finger Using Fuzzy Controller (퍼지제어를 이용한 마이크로 로보트 핑거의 힘제어)

  • 류재춘;박종국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.67-76
    • /
    • 1997
  • In this paper, a theoretical study is presented for the force control of a miniature robotic manipulator which is driven by a pair of piezo-electric bimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilevers with a force sensor at the tip and the finger is a solid beam. The robotic finger is used to hold the objects with different stiffness such as an iron block and a living insect and a moving objcet. So it is very important to develop an adequate controller for the holding operation of the finger. The main problems in force controlling are overdamping, overshoot and unknown environment(such as the stiffness of object and unknown plant parameters). So, the main target is propose the new fuzzy compensation for unknown environment and incease the system performance. The fuzzy compensation is implemented by using PI-type fuzzy approach to identified unknown environment. And the result of proposed controller was compared with the conventaional PID and optimal controller.

  • PDF

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.