• Title/Summary/Keyword: PI controllers

Search Result 242, Processing Time 0.026 seconds

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

Design of Fuzzy-PI Controllers for the Gas Turbine System (가스터빈 시스템을 위한 퍼지-PI 제어기의 설계)

  • Kim, Jong-Wook;Kim, Snag-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1013-1021
    • /
    • 2000
  • This paper suggests fuzzy-PI controllers for a heavy-duty gas turbine. The fuzzy-PI controllers are designed to regulate rotor speed and exhaust temperature of the gas turbine. The controller gains are tuned by genetic algorithm(GA). This paper also proposes a new fitness function of GA using a desired output response. The suggested controller is compared with previous controllers via simulations and it is shown that the rotor speed variation of our controller is smaller than those of previous ones.

  • PDF

Design of PI-PD Controllers to Improve a Response Characteristic in Position Control System (위치제어계에서 응답특성 개선을 위한 PI-PD제어기의 설계)

  • Kim, Jong-Hyeok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.651-657
    • /
    • 2012
  • In many control fields high position performance is essentially required in reducing the over-shoot phenomena which is produced by improving the quick response in starting and in minimizing the variation of the response characteristic on disturbance and load variation In this paper, the design method for a position control is suggested for constructing the PI-PD controllers by using an internal PD feedback loop in PI and PD control system. Applying this method to the position control system used a DC servo motor as a driver, the transfer PI and PD controllers are designed simultaneously and the coefficients of these controllers are determined by using the transfer function of a plant and a proportional coefficient from mathematical technique. From the result of computer simulation in PI-PD control system by applying this control technique, we can verify the usefulness of this method in rejecting of over-shoot of starting, compensating of response variation on the load variation, and shorting the settling time.

Truncation Effects of the Fuzzy Logic Controllers

  • Moon, Byung-Soo;Moon, Je-Sun;Lee, Jongmin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.35-40
    • /
    • 1994
  • Fuzzy logic controllers are often found to behave better than PI controllers. One of the major reasons for this is that the fuzzy logic inferences used can produce nonlinear type controllers. For some applicatioins, howeveer, linear fuzzy logic controllers also perofrm better than PI controllers. In this paper, we examine linear fuzzy logic controllers to show that the truncation effects of the fuzzy logic controllers make them perform much better than the PI controllers. In terms of a performance index we used, the truncation effects reduced the index value by up to 80% for examples we studied.

  • PDF

A Study on Development of a Fuzzy Tuner for Tuning Gains of a PI Contorller (PI제어기 이득 조정을 위한 퍼지동조기 개발에 관한 연구)

  • 허윤기;최일섭;최승갑
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.64-72
    • /
    • 1995
  • This paper proposes how to tune the gains of PI controllers in case of gain change in a process control system. Controllers of PI type have been used in industry and the gains of the controllers have been tuned by expert engineers. It, therefore, takes much time and efforts to tune the controllers. It is more difficult to find gains of multi-loop processes. The tuning method of a fuzzy tuner in this paper is developed based on the assumptions that the PI controllers are of analog type and are tuned off-line, and that the characteristic values must be supplied for the tuner. A Tuner using Fuzzy Logic(FLT1 is capable of showing presentlpast states of a process control system and finding gains of PI controllers. The verfication of the FLT is shown by various experiments.

  • PDF

Two Supplementary Methods of PI-Type Fuzzy Logic Controllers

  • Lee, Jihong;Seog Chae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.891-894
    • /
    • 1993
  • To improve limitations of fuzzy PI controller especially when applied to high order systems, we propose two types of fuzzy logic controllers that take out appropriate amounts of accumulated control input according to fuzzily described situations in addition to the incremental control input calculated by conventional fuzzy PI controllers. The structures of the proposed controller were motivated by the problems of fuzzy PI controllers that they generally give inevitable overshoot when one tries to reduce rise time of response especially when one tries to reduce rise time of response especially when a system of order higher than one is under consideration. Since the undesirable characteristics of the fuzzy PI controller are caused by integrating operation of the controller, even though the integrator itself is introduced to overcome steady state error in response, we propose two fuzzy controllers that fuzzily clear out integrated quantities according to situation. The first contr ller determines the fuzzy resetting rate by situations described fuzzily by error and error rate, and the second one by error and control input. The two structures both give reduced rise time as well as small overshoot. To show the usefulness of the proposed controller, that are applied to systems that are difficult to get satisfactory response by conventional fuzzy PI controllers.

  • PDF

UPFC Control based on New IP Type Controller

  • Shirvani, Mojtaba;Keyvani, Babak;Abdollahi, Mostafa;Memaripour, Ahmad
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.664-671
    • /
    • 2012
  • This paper presents the application of Unified Power Flow Controller (UPFC) in order to simultaneous control of power flow and voltage and also damping of Low Frequency Oscillations (LFO) at a Single-Machine Infinite-Bus (SMIB) power system installed with UPFC. PI type controllers are commonly used controllers for UPFC control. But for the sake of some drawbacks of PI type controllers, the scope for finding a better control scheme still remains. In this regard, in this paper the new IP type controllers are considered as UPFC controllers. The parameters of these IP type controllers are tuned using Genetic Algorithms (GA). Also a stabilizer supplementary controller based UPFC is considered for increasing power system damping. To show the ability of IP controllers, this controller is compared with classical PI type controllers. Simulation results emphasis on the better performance of IP controller in comparison with PI controller.

Comparative study of proportional-integral, proportional-resonant, and predictive deadbeat controllers in a PV PCS (태양광 전력변환장치의 PI, PR 및 PD 제어기 비교 연구)

  • Le, Dinh-Vuong;Kim, Chang-Soon;Hwang, Chul-Sang;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1050-1051
    • /
    • 2015
  • In industry, there are several different controllers which can be implemented for power conditioning systems (PCS) such as proportional-resonant (PR), predictive deadbeat (PD), or proportional-integral (PI) controller. But there are not any comparison studies about these controllers. To investigate the differences between the three types of the controllers, this paper presents a comparative study of PR, PI, and PD controllers in a photovoltaic (PV) PCS. These controllers are designed mathematically and simulated for the comparative analysis. The PI controller is designed in the rotating reference (dq) frame. The PR and PD controllers are implemented in the natural (abc) reference frame. The PCS is composed of a DC-DC boost converter and a full bridge inverter. The filter of the PCS is an LCL filter including a passive damping resistor. The parameters of PCS are 3 kW, 25 kHz switching frequency and 220 V-60 Hz grid voltage. The comparison results between these controllers for the grid-connected PCS are clearly shown. The simulation results demonstrate the detailed characteristics of each controller for the PV PCS in order to choose the controller for individual target properly.

  • PDF

Design of Two-Degree-of-Freedom PI Controllers using the Mixed $H_2/H_{\infty}$ Methods ($H_2 / H_{\infty}$ 혼합 기법을 이용한 2자유도 PI 제어기의 설계)

  • 조용석;박기헌
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.12-22
    • /
    • 1996
  • A numerous designs of PI controllers have been suggested to solve out trade-off between tracing and regulating problems. We constructed the PI controller system with two-degree-of-freedom that is more analytic and a better approach to a practical one. In the conventional H$_{2}$ design of optimal PI controllers, the cost function includes only the plant output terms due to the divergent problems. Since the platn input temr is not considered in PI controller design, occasionally, the plant input thends to be either very large or saturated. To solve the prior mentioned problems, we employed a mixed $H_2/H_{\infty}$ method that combines the H$_{2}$ design method to decide optimal parameters of PI controller and the $H_2/H_{\infty}$ design method to minimize the maximum amplitude of plant input. The calculation time of the H$_{infty}$ norm was considerably reduced by the simple scalar function obtained by the wiener-hopf factorization of non-scalar functions.

  • PDF

A PI-Type Fuzzy Controller Taking Control Input into Conditional Part of Rules (제어량의 크기를 조건부에 포함하는 PI형 퍼지제어기)

  • Ji Hong Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.109-119
    • /
    • 1993
  • To improve limitations of fuzzy PI controllers especially when applied to systems of order higher than one, we propose a fuzzy PI controller that takes out appropriate amounts of accumulated control input according to fuzzily described situations in addition to the calculation of incremental control input as in the case of conventional fuzzy PI controllers. The structure of the proposed controller was motivated by the characteristics of fuzzy PI controller that it generally gives inevitable overshoot when one tries to reduce rise time of the response especially when a system of order higher than one is under consideration. Since the undesirable characteristics of the fuzzy PI controller is caused by integrator of the controller, even though the integrator is introduced to overcome steady state error of response, we propose a controller that fuzzily clears out integrated quantities according to situation to give reduced rise time as well as small overshoots. To show the usefulness of the proposed controller, it is applied in simulations to such systems as are difficult to stabilize or difficult to get satisfactory responses by conventional fuzzy PI controllers.

  • PDF