• Title/Summary/Keyword: PI control gain

Search Result 246, Processing Time 0.031 seconds

Fuzzy Gain Scheduling Flux Observer for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기 구동장치를 위한 퍼지이득조정 자속관측기)

  • 금원일;류지수;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.234-234
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer takes an adaptive scheduling gains where motet speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimated values of stator resistance and speed are included as observer parameters. The parameters of the PI controllers adopted in the adaptive law for the estimation of stator resistance and motor speed are determined by simple genetic algorithm. Simulation results in low speed region are given for comparison between proposed and conventional flux estimate scheme.

  • PDF

Control of Inverted Pendulum Systems Using a State Observer (상태관측기를 이용한 도립진자 시스템의 제어)

  • Lee, Yun-Hyung;Ahn, Jong-Kap;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.462-467
    • /
    • 2007
  • The design and synthesis of a state feedback controller assumes the feedback of all state variables of the system. However, some state variables are not physical quantifies so that sensors may not be available, or may be too expensive to measure. Hence, a state observer can be an alternative to estimate unmeasurable state variables. This paper therefore presents a scheme for state observer-based stabilization control of inverted pendulum systems. The feedback gain matrices of both the state feedback controller and the state observer are tuned by real-coded genetic algorithms(RCGAs) such that the given performance indices are minimized. The proposed method is demonstrated through simulations.

Alleviating the Tower Mechanical Load of Multi-MW Wind Turbines with LQR Control

  • Nam, Yoonsu;Kien, Pham Trung;La, Yo-Han
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1024-1031
    • /
    • 2013
  • This paper addresses linear quadratic regulation (LQR) for variable speed variable pitch wind turbines. Because of the inherent nonlinearity of wind turbines, a set of operating conditions is identified and then a LQR controller is designed for each of the operating points. The feedback controller gains are then interpolated linearly to get a control law for the entire operating region. In addition, the aerodynamic torque and effective wind speed are estimated online to get the gain-scheduling variable for implementing the controller. The potential of this method is verified through simulation with the help of MATLAB/Simulink and GH Bladed. The performance and mechanical load when using LQR are also compared with those obtained when using a PI controller.

Control of a Heavy Load Pointing System Using Neural Networks (신경회로망을 이용한 대부하 표적지향 시스템 제어)

  • 김병운;강이석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.55-63
    • /
    • 2004
  • This paper presents neural network based controller using the feedback error loaming technique for a heavy load pointing system. Also the mathematical model was developed to analyze heavy load pointing system. The control scheme consists of a feedforward neural network controller and a fixed-gain feedback controller. This neural network controller is trained so as to make the output of the feedback controller zero. The proposed controller is compared with the conventional PI controller through simulations, and the results show that the pointing accuracy of the proposed control system are improved against the disturbance induced by vehicle running on the bump course.

Application of LabView-Based Parameter Scheduling Programming for a 6-Axis Articulated Robot (LabView기반 6축 수직 다관절 로봇의 파라미터 스케쥴링 프로그래밍에 관한 연구)

  • Kim, Seong-Bhn;Chung, Won-Jee;Kim, Hyo-Gon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.327-333
    • /
    • 2015
  • As industrial robots come into wider use, their control techniques are being developed along with enhancements in their performance. Specially, the dynamic performance of a 6-axis articulated industrial robot is greatly changed according to the position and orientation of the robot. This means that the PI parameter tuning of the robot and orientation of the robot. This mconsidering the dynamic characteristics of robot mechanism. In this study, $LabView^{(R)}$ programming was applied to automatically conduct parameter scheduling for various robot motions. Using forward and inverse kinematics of RS2, we can divide the working envelope of RS2 into 24 subspaces. We then conduct the gain-tuning according to each subspace. Finally, we program the actual gain scheduling, in which the optimized gain-tuning for each subspace to be passed should be changed for various robot motions using $LabView^{(R)}$.

A Study on The Neural Network Controller using Relative Gain Matrix Technique (상대이득 행렬 기법을 이용한 신경망 제어기 설계에 관한 연구)

  • Seo, Ho-Joon;Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.606-608
    • /
    • 1997
  • In this paper, Neuro-Fuzzy Controller(NFC), a fuzzy system realized using a neural network, is to adopt for the multivariable system. In the multivariable system, the interactive effects between the variables should be taken into account. A simple compensator, using the steady-state information can be obtained for open-loop stable systems, is presented to cope with this problem. However, it should be supposed that the plant is unknown to the control system designer, but an estimate of the DC gain has been obtained by carrying out experiments on the plant. Also, if the variables are not combinated completely, it is difficult to design the controller. Therefore, we design a neuro-fuzzy controller which controls a multivariable system with only input output informations, and compare its performance with that of a PI controller. In the proposed controller, the construction of the membership functions and rule base, which is highly heuristic, can be achieved using a training process. This allows the combination of knowledge of human experts and evidence from input-output data.

  • PDF

Design of Single Loop Output Voltage Controller for 3 Phase PWM Inverterl (3상 PWM 인버터의 단일루프 전압제어기 설계)

  • 곽철훈;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.561-568
    • /
    • 2003
  • There arc two ways in the output voltage control method in PWM inverters. One Is double loop voltage control composed of inner current control loop and outer voltage control loop.'rho other is single loop voltage control method composed of voltage control loop only. It's characteristics shows lower performance in case of high output impedance than double loop voltage control. However, in case of low output impedance, it shows good control performance in all load ranges than double loop voltage control. In this paper, the rule and the gain of single loop voltage control have been developed analytically and these were verified through computer simulation and experiment.

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • Park, Hyun-Chul;Lee, Su-Woon;Kim, Yeong-Min;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • This study presents a design method for a single-loop voltage controller that is suitable for an arbitrary waveform generator (AWG). The voltage control algorithm of AWG should ensure high dynamic performance and should attain sufficient robustness to disturbances such as inverter nonlinearity, sensor noise, and load current. By analyzing the power circuit of AWG, control limitation and control target are presented to improve the dynamic performance of AWG. The proposed voltage control algorithm is composed of a single-loop output voltage control, an inverter current feedback term to improve transient response, and a load current feedforward term to prevent voltage distortion. The guideline for setting control gain is presented based on output filter parameters and digital time delay. The performance of the proposed algorithm is proven by experimental results through comparison with the conventional algorithm.