• Title/Summary/Keyword: PI Speed controller

Search Result 445, Processing Time 0.026 seconds

AC and DC Applications of Induction Generator Excited by Static VAR Compensator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.169-179
    • /
    • 2004
  • This paper presents the steady-state analysis of the three-phase self-excited induction generator (SEIG). The three-phase SEIG with a squirrel cage rotor is driven by a variable-speed prime mover (VSPM) or a constant-speed prime mover (CSPM) such as a wind turbine or a micro gas turbine. Furthermore, a PI closed-loop feedback voltage regulation scheme of the three-phase SEIG driven by a VSPM on the basis of the static VAR compensator (SVC) is designed and evaluated for the stand-alone AC and DC power applications. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of its fast responses and high performances

Adaptive Input-Output Control of Induction Motor for Type of $\pi$ Modeling Consider Magnetic Saturation (자기포화를 고려한 $\pi$형 모델 유도기의 적응 선형화 기법 제어)

  • Kim Do-Woo;Jung Gi-Chul;Lee Seng-Hak;Kim Hong-Phil
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.697-702
    • /
    • 2004
  • In this paper, we proposed that the problem of controlling induction motor with magnetic saturation, is studied from an input-output feedback linearization with adaptive algorithm. is considered. An adaptive input-output feedback linearizing controller is considered under the assumption of known motor parameters and unknown load torque. In order to achieve the speed regulation with the consideration of improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. Simulation results are provided for illustration.

THE DYNAMICAL PERFORMANCE OF CONTROLLED FLYWHEELING DUAL CONVERTER-FED DC MOTOR DRIVES WITH SIMULATANEOUS CONTROL AND FUZZY PI CONTROLLER

  • Soltani, Jafar;Sojdei, Jamshid
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.414-419
    • /
    • 1998
  • This paper describes the dynamical performance of a four-quadrant circulation current mode control of dc motor drive, using the controlled flywleeling technique, a four-quadrant closed-loop control drive with an inner current control loop and a speed fuzzy PI regulator is designed. The obtained computer simulation results of a dc motor drive below and above the base speed are demonstrated. These result show that compare to a conventional dual-converter-fed dc motor drive with simultaneous control, the overal system performance has been improved and also, agood stability and robstness has been achieved.

  • PDF

Disturbance Control of Induction Motor using Tough Disturbance Cancellation State Observer (외란 상쇄 관측기를 이용한 유도전동기 외란 제어)

  • Kim, Young-Choon;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.131-136
    • /
    • 2006
  • This paper described a robust control of an induction motor using a disturbance cancellation observer of a feedforward control with Matlab simulink. The speed response of conventional PI controller characteristics is affected by variation of load torque disturbance. In this system, the speed control characteristics using a feedforward control toughen about a load torque disturbance.

  • PDF

Design of Adaptive Controller to Compensate Dynamic Friction for a Benchmark Robot (벤치마크 로봇의 동적 마찰 보상을 위한 적응 제어기 설계)

  • Kim, In-Hyuk;Cho, Kyoung-Hoon;Son, Young Ik;Kim, Pil-Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.202-208
    • /
    • 2014
  • Friction force on robot systems is highly nonlinear and especially disturbs precise control of the robots at low speed. This paper deals with the dynamic friction compensation problem of a well-known one-link benchmark robot system. We consider the LuGre model because the model can successfully represent dynamic characteristics and various effects of friction phenomenon. The proposed controller is constructed as two parts. An adaptive controller based on dual observers is used to estimate and compensate the dynamic friction. In order to attenuate the friction estimation error and other disturbances, PI observer is additionally designed. Through the computer simulations with the benchmark system, this paper first examines the effects of nonlinear dynamic friction on the control performance of the benchmark robot system. Next, it is shown that the control performance against the dynamic friction is improved by using the proposed controller.

Variable-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator Voltage Regulation Scheme with Static VAR Compensator Controlled by Pl Controller

  • Ahmed Tarek;Nishida Katsumi;Sato Shinji;Nagai Shinichro;Hiraki Eiji;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.532-535
    • /
    • 2003
  • In this paper, a Pl controlled feedback closed-loop voltage regulation scheme of the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is designed on the basis of the static VAR compensator (SVC) and discussed in experiment fer the promising stand-alone power independent conditioner. The simulation and experimental results of the three-phase SEIG with the simple SVC controller for its stabilized voltage regulation prove the practical effectiveness of the additional SVC control loop scheme including the PI controller with fast response characteristics and steady-sate performance improvement.

  • PDF

Development of Self-Tuning and Adaptive Fuzzy Controller to Control Induction Motor Drive (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.32-34
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good Performance over a wide range of operation, even under ideal field oriented conditions. This paper is proposed model reference adaptive fuzzy control(MFC) and artificial neural network(ANN) based on the vector controlled induction motor drive system. Also, this paper is proposed control of speed and current using fuzzy adaption mechanism(FAM), MFC and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM, MFC and ANN controller. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

  • PDF

Design of a GA-Based Fuzzy PID Controller for Optical Disk Drive (유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PID 제어기 설계)

  • 유종화;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.598-603
    • /
    • 2004
  • An optical head actuator of an optical disk drive consists of two servo mechanisms for the focusing and the tracking to acquire data from disk. As the rotational speed of the disk grows, the utilized lag-lead-lead compensator has known to be above its ability for precisely controlling the optical head actuator. To overcome the difficulty, this paper propose a new controller design method for optical head actuator based fuzzy proportional-integral-derivative (PID) control and the genetic algorithm(GA). It employs a two-stage control structure with a fuzzy PI and a fuzzy PD control and is optimized by the GA to yield the suboptimal fuzzy PID control performance. It is shown the feasibility of the proposed method through a numerical tracking actuator simulation.

Sensorless Vector Control of Spindle Induction Motors Using Rotor Flux Observer with a Variable Bandwidth (가변게인 회전자 자속관측기에 근거한 스핀들 유도전동기의 센서리스 속도제어)

  • Yu, Jae-Sung;Sin, Soo-Cheol;Lee, Won-Cheol;Park, Sang-Hoon;Won, Chung-Yuen;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.417-425
    • /
    • 2006
  • This paper presents a new speed sensorless vector control scheme of Spindle Induction Motors(SIM) which can be successfully applied to at any speed including even zero speed. The proposed sensorless vector control of SIM uses rotor flux estimator with a variable bandwidth. This approach is based on the Closed-Loop Rotor Flux Observer(CLRFO) which includes a variable bandwidth of the PI controller. For low speed operation, the bandwidth of CLRFO has a variable bandwidth structure according to the estimated rotor velocity. The experimental results show the satisfactory operation of the proposed sensorless algorithm.

High Speed and Robust Control System with Deadbeat Disturbance Observer for 3D Eye Imaging Equipment (망막의 3차원 영상화를 위한 데드비트 외란 관측기를 가진 고속, 고강성 제어 시스템)

  • 고종선;이태훈;김영일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.418-426
    • /
    • 2003
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the traveling difference. This method requires exact synchronous control of laser traveling in optic system to show a clear 3-dimensional image of retina To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a high speed and synchronous control of the galvanometer to make 3-dimensional retina image is presented. For the more, deadbeat load torque observer is added to the PI controller for compensation of the position error arisen in the high speed control. As a result, the proposed control system has a robust and precise response against the load torque variation appeared in high speed control. A stability and usefulness are verified by the computer simulation and the experiment.