• Title/Summary/Keyword: PI Speed controller

Search Result 445, Processing Time 0.029 seconds

AC Servo Motor Controller for Driving Cartesian Coordinate Type Robot Using Neural Networks (신경회로망을 이용한 평면 좌표계형 로봇구동용 교류서보전동기 제어기)

  • 김평호;서진연;김대곤;이강연;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.14-17
    • /
    • 1999
  • This paper describes the controller for the improving speed control the AC servo motor. The microprocessor provides an output to the difference in command. The servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant. We can know that PI control using neural networks by 80196 can control efficiently speed of AC Servo motor. Finally experimental results prove excellent performance of this control system. The system can be adaptable to CNC machine.

  • PDF

High Speed Grid Voltage Detection Method for 3 Phase Grid-Connected Inverter during Grid Faults (전원사고 시 3상 계통연계 인버터의 전원 전압 고속 검출 방법)

  • Choi, Hyeong-Jin;Song, Seung-Ho;Jeong, Seung-Gi;Choi, Ju-Yeop;Choy, Ick
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.65-72
    • /
    • 2009
  • The new method is proposed to improve high speed detection of grid voltage phase and magnitude during a voltage dip due to a grid faults. Usually, A LPF(Low Pass Filter) is used in the feedback loop of PLL (Phase Locked Loop) system because the measured grid voltage contains harmonic distortions and sensor noises. so, a new design method of the loop gain of the PI -type controller in the PLL system is proposed with the consideration of the dynamics of the LPF. As a result, a better transient response can be obtained with the proposed design method. The LPF frequency and PI controller gain are designed in coordination according to the steady state and dynamic performance requirement. This paper shows the feasibility and the usefulness of the proposed methods through the computer simulation and the lab-scale experiments.

Static VAR Compensator-Based Voltage Regulation for Variable-Speed Prime Mover Coupled Single- Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Noro, Osamu;Sato, Shinji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.185-196
    • /
    • 2003
  • In this paper, the single-phase static VAR compensator (SVC) is applied to regulate and stabilize the generated terminal voltage of the single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) under the conditions of the independent inductive load variations and the prime mover speed changes The conventional fixed gain PI controller-based feedback control scheme is employed to adjust the equivalent capacitance of the single-phase SVC composed of the fixed excitation capacitor FC in parallel with the thyristor switched capacitor TSC and the thyristor controlled reactor TCR The feedback closed-loop terminal voltage responses in the single-phase SEIG coupled by a VSPM with different inductive passive load disturbances using the single-phase SVC with the PI controller are considered and discussed herem. A VSPM coupled the single-phase SEIG prototype setup is established. Its experimental results are illustrated as compared with its simulation ones and give good agreements with the digital simulation results for the single-phase SEIG driven by a VSPM, which is based on the SVC voltage regulation feedback control scheme.

Design of a permanent magnetic synchronous motor speed servo controller using on-line tuning PI control method (온라인 동조 PI 제어기법을 이용한 영구자석형 동기전동기의 속도 제어기 설계)

  • Jun, In-Hyo;Im, Sang-Duck;Choi, Jung-Keyng;Park, Seung-Yub
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.36-45
    • /
    • 1998
  • In this paper, a method of on-line PI gain-tuninng is proposed for the speed control of brushless D.C. motor by investigating the pattern of input and output without estimating parameter. Proportional gain is tuned in the process to obtain a fast speed response by supplying the maximum constant input. And integral gain is appropriately tuned in the process of proportional control so that the response may be stably converged and the overshoot may be prevented. Therefore because both control and gain-tuning are executed concurrently, additional works that estimate parameters and so on aren't required in the proposed method. In the proposed method, both fast-response and overshoot problem are well solved, and it is more useful and convenient than existing auto-tuning methods in the speed control of D.C. motor. It is illustrated by simulations and experimental results that the proposed method is useful and stable.

  • PDF

A Design of Improved Digital Controller of BLDC Motor Using DSP (DSP를 사용한 브러시리스 DC 모터의 향상된 디지털 전류제어기 설계)

  • Ha, Young-Suk;Ahn, Ho-Kyun;Park, Seung-Kyu;Lee, Jong-Ju;Kim, Sung-Hwon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1209-1211
    • /
    • 2001
  • Generally, the current controller is located inner the whole controller, so the characteristic of the current controller is important in controlling performance of the upper controller. A current control loop in motor control is designed so that it is 10 times faster than the speed control loop of the upper controller. Thus, the current controller with complex control algorithm is not proper. In this paper, the improved current controller using a conventional digital PI controller and feedforward controller for the brushless BC motor is designed.

  • PDF

Advanced speed control of the seven-phase PM brush less DC motor using fuzzy logic controller (퍼지제어기를 이용한 영구자석형 7상 브러시리스 직류전동기의 속도제어 성능개선)

  • Park, Sang-Hoon;Yu, Dong-Hwan;Lee, Hee-Jun;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.440-444
    • /
    • 2008
  • The 7-phase BLDC motor is possible for higher efficiency per the unit area, high power and high speed due to the increasing number of phase. Also, it can be looking forward to reduce the current ripple at a point of commutation by the increasing number of phase. Thus, a study for applications of servo system, medical and military instruments is progressing about the BLDC motor is manufactured with multi-phase, currently. This paper is used the fuzzy logic control method for speed control of 7-phase BLDC motor and this is compared with the conventional PI controller using by simulation and experimental results for verification validity of the fuzzy logic controller in this system. The 7-phase BLDC motor and controller are modeled by PSIM6.0 software of PowerSim co. in simulation and we are experimented by the test board that is composed with TMS320VC33-150 DSP controller of Texas Instruments co. and FLEX EPF6016TC144-3 of ALTERA co.

  • PDF

Robust Speed Control Scheme for Torsional Vibration Suppression of Two Mass System (이관성계 전동기 구동시스템의 축진동억제를 위한 강인한 속도제어기법)

  • 박태식;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • In this paper, the new robust torsional vibration suppression control scheme is proposed for the two mass system. A reduced order state feedback controller where the motor speed and the observed torsional torque are fed back and the PI controller are proposed as the torsional vibration suppression controller. Using the estimated mechanical parameters by off-line RLS(Recursive Least Square) algorithms, the speed controller for torsional vibration suppression is designed and its gains are determined using the Kharitonov robust control theory. The Kharitonov robust control theory can obtain the robust stability with a specified stability margin and a damping limit and the good performance of vibration suppression although if the parameters are varied within some specified limit. The effectiveness and usefulness of the proposed schemes are verified with the simulation and the experimental results on the fully-digitalized 5.5kW two mass system.

A Study on the Design and Speed Control of the Switched Reluctance Motor for Railway Traction Application (철도차량용 스위치드 릴럭턴스 전동기의 설계 및 속도제어에 관한 연구)

  • Jo, Hee;Kim, Kyeong-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.237-243
    • /
    • 2012
  • In this paper, a magnetic analysis of SRM(Switched Reluctance Motor) using 3d finite element method considering end-coil effect is presented. SRM models with different stator pole shapes are taken into consideration for the analysis of magnetic characteristics. It is observed that a stator pole shape model having a pole shoe depth is the most suitable one for railway traction application because it gives an improved inductance and torque characteristic. For a speed control of SRM, the PI and sliding mode controllers are applied to designed SRM with magnetic characteristic data obtained from the magnetic analysis. The simulations are carried out using Matlab-Simulink and the control performance is analyzed. By employing the sliding mode controller, the transient response as well as the steady-state error are much improved under a load variation of railway resistance under operation.

Adaptive Feed-forward Control with Reference Model for Position Controller (기준모델과 피드포워드 적응제어를 사용한 위치제어기)

  • 윤명하;최남열;이치환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.413-418
    • /
    • 2002
  • This paper proposed a feed-forward adaptive position controller that is robust for variable Inertia. The control system consists of PI Position controller, feed-forward and model reference adaptive control. A parameter g(t) of the feed-forward adaptive position controller is adapted by using both the reference model speed and position error. So it improves the transient response and reduces the settling time. And normalization function Is used to make linear adaptation time. The validity of the feed-forward adaptive controller is confirmed by simulation results.

The Performance Analysis of Induction Motors Speed using GA based PI Controller (유전자 알고리즘을 이용한 유도전동기 속도 성능 평가)

  • Lee, Jae-Do;Ryu, Ho-Seon;Kim, Jin-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1175-1177
    • /
    • 2002
  • 본 논문에서는 외란에 매우 강인한 특성을 갖는 유전자 알고리즘에 의한 PI 제어기를 통하여 속도 제어기를 설계하고 성능평가를 하였다. 유전자 알고리즘의 파라미터인 교배율, 돌연변이율, 세대내 개체수 세대수를 선정하여 최적해를 구하는데 적절한 선정이 필요하다. 따라서 Matlab/Simulink 환경 하에서 유도전동기 제어 시스템을 모델링하고 시뮬레이션 결과를 통해서 유전자 알고리즘의 적절한 파라미터 선정 후 제어기의 유용성을 입증하였다.

  • PDF