• Title/Summary/Keyword: PI Speed controller

Search Result 445, Processing Time 0.027 seconds

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-1 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-1)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Electric railroad systems consist of supply system of electric power and electric locomotive. The electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending minimum energy between motor blocks and traction motors. Recently, induction motors have been used than DC and synchronized motors as traction motors. Speed control of induction motors are used by vector control techniques. In this paper, speed of the induction motor is controlled by using the vector control technique. Control system model is presented by using Simulink. Pulse is controlled by PI and hysteresis controller. IGBT inverter is used for real-time control and system performance is demonstrated by simulating the induction motor which has 210[kW] on the output power.

Automatic P/PI speed controller design for industry servo drives (산업용 서보 구동 시스템을 위한 자동 P/PI 속도 제어기 설계)

  • Bae, Sang-Gyu;Seok, Jul-Ki;Kim, Kyung-Tae;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.179-181
    • /
    • 2003
  • Conventional P/PI speed controller of today's servo drives should be manually tuned the controller switching set-point by trial-and-errors, which may translate the drive system down-time and loss of productivity. The adjustable drive performance is heavily dependent on the qualify of the expert knowledge and becomes inadequate in applications where the operating conditions change in a wide range, i.e., tracking command, cceleration/deceleration time, and load disturbances. In this paper, the demands on simple controls/setup are discussed for industry servo drives. Analyzing the frequency content of motor torque command, P/PI control mode switching is automatically peformed with some prior knowledge of the mechanical dynamics. The dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of traditional P/PI control scheme, extensive test is carried out on actual servo system.

  • PDF

A Speed Control Scheme with The Torque Compensator based on the Activation Function for PMSM (PMSM에 대한 활성화 함수를 가지는 토크 보상기의 속도제어)

  • Kim, Hong Min;Lim, Geun Min;Ahn, Jin Woo;Lee, Dong Hee
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.315-316
    • /
    • 2011
  • This paper presents speed control scheme of the PMSM which has torque compensator to reduce the speed error and ripple. The proposed speed controller is based on the conventional PI control scheme. But the additional torque compensator which is different to the conventional differential controller produces a compensation torque to suppress speed ripple. In order to determine the proper compensation, the activation function which has discrete value is used in the proposed control scheme. With the proposed activation function, the compensation torque acts to suppress the speed error increasing. The proposed speed control scheme is verified by the computer simulation and experiments of 400[W] PMSM. In the simulation and experiments, the proposed control scheme has better control performance compare than the conventional PI and PID control schemes.

  • PDF

Speed Control of an Induction Moter using Fuzzy-Neural Controller (퍼지-뉴럴 제어기를 이용한 유도전동기 속도 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.10
    • /
    • pp.443-445
    • /
    • 2006
  • Generally PI controller is used to control the speed of an induction motor. It has the good performance of speed control in case of adjusting the control parameters. But it occurred the problem to change the control parameters in the change of operation condition. In order to solve this problem, Fuzzy control or Artificial neural network is introduced in the speed control of an induction motor. However, Fuzzy control have the problems as the difficulties to change the membership function and fuzzy rule and the remaining error Also Neural network has the problem as the difficulties to analyze the behavior of inner part. Therefore, the study on the combination of two controller is proceeded. In this paper, Fuzzy-neural controller to make up these controllers in parallel is proposed and the speed control of an induction motor is performed using the proposed controller Through the experiment, the fast response and good stability of the proposed speed controller is proved.

Neural network PI parameter Self-tuning Simulator for Permanent Magnet Synchronous Motor operation (영구자석 동기전동기 구동을 위한 신경회로망 PI 파라미터 자기 동조 시뮬레이터)

  • Bae, Eun-Kyeong;Kwon, Jung-Dong;Jeon, Kee-Young;Park, Choon-Woo;Oh, Bong-Hwan;Jeong, Choon-Byeong;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.394-396
    • /
    • 2007
  • In this paper proposed to neural network PI self-tuning direct controller using Error back propagation algorithm. Proposed controller applies to speed controller and current controller. Also, this built up the interface environment to drive it simply and exactly in any kind of reference, environment fluent and parameter transaction of PMSM. Neural network PI self-tuning simulator using Visual C++ and Matlab Simulation is organized to construct this environment, Built up interface has it's own purpose that even the user who don't have the accurate knowledge of Neural network can embody operation characteristic rapidly and easily.

  • PDF

Fuel Flow Control of Turbojet Engine Using the Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 터보제트 엔진의 연료유량 제어)

  • Jung, Byeong-In;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, Proposed controller prevent compressor surge and reduce the acceleration time of the fuel flow control system for turbo-jet engine. Turbo-jet engine controller is designed by applying fuzzy PI+D control algorithm and make an inference by applying Mamdani's inference method and the defuzzification using the center of gravity method. Fuzzy inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller.

Position Control of Stepping Motor using Torque Angle Control Scheme (토크 각도제어기법을 적용한 스테핑 전동기의 위치제어)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • This paper presents high speed position controller using stepping motor. The proposed position controller has close loop and open loop mode. In the high speed region, torque angle which is controlled by PI controller and memory based look-up table, is used to keep the reference position. The memory based look-up table produces a torque angle according to motor speed, and the PI controller can compensate the torque angle error. So, the fast dynamic response can be expected in the same position error. The open loop control mode which is divided by 3-modes control the actual position in the low speed and small position error. Each open loop modes are designed to reduce position error and dynamic brake in the stop command. The proposed position control scheme is verified by the practical stepping motor.

Anti-Windup of PI Controller for DC Motor Drives (직류 전동기 구동을 위한 PI 제어기의 Anti-Windup)

  • Lee, G-Myoung;Lee, Gi-Do;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.498-500
    • /
    • 1996
  • This paper presents anti-windup to compensate the integrator windup of the current and the speed PI controller of DC motor, which suppress the overshoot of transient response without delay of rising time. The simulation results using Simulink show the validity of anti-windup methods.

  • PDF

SRM modeling and simulation of senserless speed control method using PI controller (PI 제어기를 이용한 센서리스 속도제어 방식의 SRM 모델링 및 시뮬레이션)

  • 최재동
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.525-528
    • /
    • 2000
  • This paper presents a circuit analysis and cotnrol example of favored configuration 6/4 SRM. SRM modeling and analysis are necessary for experiment. Thus this paper proposes a SRM modeling with PI controller (of driving converter) input voltage chopping and inductance profile when rotor position transformed. Through this simulation the designer can predict operating states of systems over a broad range of operating conditions.

  • PDF

Sensorless Control of PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 PMSM 센서리스 제어)

  • Lee, Jong-Kun;Seok, Jul-Ki;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.176-178
    • /
    • 2003
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to aero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF