• Title/Summary/Keyword: PI Speed controller

Search Result 445, Processing Time 0.027 seconds

A Self-Tuning Fuzzy Speed Control Method for an Induction Motor (벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법)

  • Kim, Dong-Shin;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF

Design of Linear Pitch Controller in Wind Turbine under the condition of Varying Operating Points (동작점 변화 조건에서의 풍력터빈 선형 피치제어기 설계)

  • Cheon, Jongmin;Kim, Choonkyoung;Lee, Joohoon;Hong, Jitae;Kwon, Soonman
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • This paper presents a pitch controller which can hold output power constant at the rated value. Although wind turbine contains complicated nonlinearities, its behaviour within a certain operating range of a point can be approximated by that of a linear model. By doing so, we can apply rather simple and systematic linear control techniques such as PID and LQR(Linear Quadratic Regulator) to design a linear pitch controller. Because these linear controllers are valid only in a sufficiently small range around an operating point, linearized wind turbine model under the condition of varying wind speed needs a linear pitch controller can achieve the aims of tracking the rated rotor rotational speed. We propose an improved linear pitch controller taking each merit of LQR and PI controller under the condition of varying operating points in this paper.

  • PDF

A New Start-up Method for a Load Commutated Inverter for Large Synchronous Generator of Gas-Turbine

  • An, Hyunsung;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.201-210
    • /
    • 2018
  • This paper proposes a new start-up method for a load commutated inverter (LCI) in a large synchronous gas-turbine generator. The initial rotor position for start-up torque is detected by the proposed initial angle detector, which consists of an integrator and a phase-locked loop. The initial rotor position is accurately detected within 150ms, and the angle difference between the real position and the detected position is less than 1%. The LCI system operates in two modes (forced commutation mode and natural commutation mode) according to operating speed range. The proposed controllers include a forced commutation controller for the low-speed range, a PI speed controller and a PI current controller, where the forced commutation controller is connected to the current controller in parallel. The current controller is modeled by Matlab/Simulink, where a six-pulse delay of the thyristor and a processing delay are considered by using a zero-order hold. The performance of the proposed start-up method is evaluated in Matlab/Psim at standstill and at low speed. To verify the feasibility of the method, a 5kVA LCI system prototype is implemented, and the proposed initial angle detector and the system performance are confirmed by experimental results from standstill to 900rpm.

High Speed Control of a Switched Reluctance Motor Using a Leading Angle Manipulation (스위칭각 조정방식에 의한 SRM의 고속 제어기 설계)

  • Yeo, Hyeong-Gee;Lee, Sang-Lak;Yoo, Ji-Yoon;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.3-5
    • /
    • 1994
  • The SRM can be operated on the high speed range in which the back-emf is greater than the DC link voltage. However, the phase current of the SRM should be controlled through the selection of an exciting angle since it can not be controlled by a chop of the DC link voltage in the high speed range. In this paper, a PI and a bang-bang controller are employed in order to control the speed of the SRM and the leading angle of the SRM is adapted as a control input. The performances of two controllers are evaluated by computer simulation. The results show that the bang-bang controller is more attractive than the PI controller in the cost and performance aspects.

  • PDF

Design of a self-tunig PI speed controller for servo systems (서보전동기 구동시스템의 자기동조 비례적분 속도제어기 설계)

  • Moon, K.;Jeong, Y.;Son, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.128-130
    • /
    • 2008
  • This paper presents an algorithm to design a self-tuning proportional-integral(PI) speed controller for servo systems. The control gains are calculated with estimated system parameters, i.e. inertia and viscous damping which are estimated by initial operation. The simulation and experimental results show the feasibility and performance of the proposed algorithm.

  • PDF

Enhanced Hybrid Multi Electrical Cupping System using S-PI Controller (S-PI 제어기를 이용한 개선된 하이브리드 멀티전동부항시스템)

  • Kim, Jong-Chan;Kim, CheeYong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1400-1407
    • /
    • 2015
  • In the paper, we suggest bettered EHMECS(Enhanced Hybrid Multi Electrical Cupping System) to regulate automatically vacuum pressure using many cupping cup at once. We controlled accurately the pressure using S-PI control technique in pump motor to input the air inside cupping cup. S-PI control compared constant velocity, load and velocity variance between existing PI and FLC(Fuzzy Logic Control). The stabilization time of suggested S-PI control improve 20% of existing PI and 8% of FLC. The error constant of normal condition improved 71% of existing PI and 62% of FLC in steady speed and 80% of existing PI and 67% of FLC in load change. Also the error constant about velocity variance improve 45% of PI control. It is prove the suggested S-PI control technique. When use long time vacuum pressure of cupping cup regulated the suggested S-PI control technique, can loosen knotted muscles.

Optimization of a PI Controller Design for an Oil Cooler System with a Variable Rotating Speed Compressor (가변속 압축기를 갖는 오일쿨러의 최적 PI 제어기 설계)

  • Kwon, Taeeun;Jeong, Taeyoung;Jeong, Seokkwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.502-508
    • /
    • 2016
  • An optimized PI controller design method is presented to promote the control performance of an oil cooler system for high precision machine tools. First, a transfer function model of the oil cooler system with a variable rotating speed compressor was obtained by the perturbation method as the first order system with a negligible dead time. Then, the closed-loop control system was described as the second order system with a zero. Its dynamic behaviors are mostly governed by characteristic parameters, the damping ratio, and the natural frequency which is incorporated in PI gains. Next, an optimum integral of the time-weighted absolute error (ITAE) criterion was applied to the second order system. The characteristic parameters can be determined by the given design specifications, percent overshoots and settling times and comparisons with the ITAE criterion. Hence, the PI gains were plainly identified in a deterministic way. Finally, the PI gains were fine-tuned to obtain desirable dynamics in real systems, considering the zero effect and parameter variations. The validity of the proposed method was proven by computer simulations and real experiments for selected cases.

BLDC Motor Control using Neural Network PI Self tuning (신경회로망 PI자기동조를 이용한 BLDC 모터제어)

  • Bae, E.K.;Kwon, J.D.;Jeon, K.Y.;Hahm, N.G.;Lee, S.H.;Lee, H.G.;Chung, C.B.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.136-138
    • /
    • 2005
  • The conventional self-tuning methods have the speed control problem of nonlinear BLDC motor which can't adapt against any kinds of noise or operation circumstances. In this paper, supposed to solve these problem to PI parameters controller algorithm using ANN. In the proposed algorithm, the parameters of the controller were adjusted to reduce by on-line system the error of the speed of BLDC motor. In this process, EBPA NN was constituted to an output error value of a BLDC motor and conspired an input and output. The performance of the self-tuning controller is compared with that of the PI controller tuned by conventional method(Z&N). The effectiveness of the proposed control method IS verified thought the Matlab Simulink.

  • PDF

Implementation of Self-Tuning Fuzzy Control System for Robust Speed Control of an Induction Motor (유도 전동기의 견실한 속도 제어를 위한 자기 조정 퍼지 제어 시스템의 구현)

  • 송호신;이오결;이준탁;우정인
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.346-349
    • /
    • 1994
  • In this paper, we implemented the variable spped controller of an induction motor using the self-tuning fuzzy control algorithms, which recently is invoking the remarkable interest. Also we preposed a self-tuning technique of scale factors which could easily design the fuzzy speed controller. Comparing with conventional PI speed controller, the performances of proposed fuzzy controller such as dynamic responses and its the robustness against load disturbance were substantially improved.

High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller (HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.33-40
    • /
    • 2009
  • This paper presents the high performance control of interior permanent magnet synchronous motor(IPMSM) using space vector(SV) PWM method based on hybrid artificial intelligent(HAI) controller. The HAI controller combines the advantages between adaptive fuzzy control and neural network The SV PWM method is applied to a speed control system of motor in the industry field until now and is feasible to improve harmonic rate of output current, switching frequency and response characteristics. This HAI controller is used instead of conventional PI controller in order to solve problems happening when calculating a reference voltage. The HAI controller improves speed performance by hybrid combination of reference model-based adaptive mechanism method, fuzzy control and neural network. This paper analyzes response characteristics of parameter variation, steady-state and transient-state using proposed HAI controller and this controller compares with conventional fuzzy neural network(FNN) and PI controller. Also, this paper proves validity of HAI controller.