• 제목/요약/키워드: PI Current control

검색결과 416건 처리시간 0.027초

Current Control of the Forklift using a Fuzzy Controller

  • Bae, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2552-2556
    • /
    • 2005
  • In general, the forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by current control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the forklift is demanded the robust drive mode. Some cases of the mode, there aretrouble in torque control following slope capacity. The control is sensitive concerning about slope angle and output speed, various control method is studied for stability of speed control. In this paper, I apply current control for the self-tuning using the fuzzy controller to obtain robust, stable speed control and use stable, high efficiency control using DSP as main controller for high speed processor, embody dynamic characteristic of control compared the PI controller to the fuzzy controller.

  • PDF

계통연계형 인버터의 전류제어기법 성능 비교 (Performance comparison study of current control methods for grid connected inverters)

  • 정호령;이재석
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.877-882
    • /
    • 2020
  • 본 논문에서는 계통연계형 인버터(Grid-connected inverter, GCI) 시스템을 위한 전류 제어 방법들의 성능 비교 연구를 제시한다. GCI 시스템을 위해 다양한 전류 제어 방법이 개발되었으며 각 제어기마다 장점과 한계를 가지고 있다. 본 논문에서는 GCI 전류 제어기들의 정상 상태 및 과도 상태에서의 동적 성능을 비교 분석한다. 제안한 전향보상기법(Command feedforward control, CFFC) 및 외란제거제어(Disturbance rejection control, DRC)가 모든 GCI 전류 제어기에 적용 전과 후의 성능을 비교 분석하였다. 제안된 CFFC와 DRC 제어 알고리즘을 주파수 영역에서 분석하고 성능 검증을 위해 각 GCI 전류 제어 방법들의 시뮬레이션 및 실험 모델을 개발하였다.

벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법 (A Self-Tuning Fuzzy Speed Control Method for an Induction Motor)

  • 김동신;한우용;이창구;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF

다중 HBPI 제어기를 이용한 유도전동기 드라이브의 최대토크 제어 (Maximum Torque Control of Induction Motor Drive using Multi-HBPI Controller)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제24권9호
    • /
    • pp.26-35
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed and current using hybrid PI(HBPI) controller and estimation of speed using ANN. Also, this paper is proposed maximum torque control of induction motor using slip angular speed and current condition at widely speed range. The performance of the proposed induction motor drive with maximum torque control using HBPI controller is verified by analysis results at dynamic operation conditions.

직류전압 퍼지 제어 기반의 3상 Z-소스 PWM 정류기 (Three-Phase Z-Source PWM Rectifier Based on the DC Voltage Fuzzy Control)

  • 수효동;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.466-476
    • /
    • 2013
  • This paper describes a fuzzy control method to control the output voltage of the three-phase Z-source PWM rectifier. A fuzzy control system is a control system based on fuzzy logic, and the fuzzy controller uses a single input fuzzy theory with its fuzzification. Analytical structure of the simplest fuzzy controller is derived through the triangular membership functions with its fuzzification. By setting the membership functions of the fuzzy rules, fuzzy control is achieved. The PI portion of the output DC voltage controller is controlled by fuzzy method. To confirm the validity of the proposed method, the simulation and experiment were performed, The simulation is performed with PSIM and MATLAB/SIMULINK. For the experiment, we used a DSP(TMS320F28335) controller to compute the reference value and generate the PWM pulses. For the transient state performance of the output DC voltage control of Z-source PWM rectifier, the PI controller and fuzzy controller were compared, also the conventional PWM rectifier and Z-source PWM rectifier were compared. From the results, the Z-source rectifier could allow to buck or boost of the output DC voltage. Through the analysis of the transient state, we could observe that the fuzzy controller has better performance than the conventional PI controller.

Current-Programmed Control of Three Phase PWM AC-AC Buck Converter

  • Choi, Nam-Sup;Li, Yulong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.356-361
    • /
    • 2005
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. Compared to duty-ratio voltage control, current programmed control has several advantages such as reduction of system order and inherent current protection. By considering only the magnitude components, the same scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. Sensing the output voltage and the inductor current, an error signal will be generated by comparing the output voltage magnitude with a reference value. Then the error signal will be processed by a PI compensator to generate the current command. The converter switches will the change the state by a periodic clock pulse or at the instants when the inductor current magnitude reaches the current command. As an example case, the buck converter is treated. The converter analysis is carried out by applying the complex DQ circuit transformation to obtain basic physical insight into the converter operation and to establish some important characteristic equations for control purpose. The simulation with Simplorer shows the validity of the proposed scheme and the experimental results support the verification of the design.

  • PDF

Average Current Control for Parallel Connected Converters

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1153-1161
    • /
    • 2019
  • A current sharing controller is proposed in this paper for parallel-connected converters. The proposed controller is based on the calculation of the magnitudes of system current space vectors. Good current distribution between parallel converters is achieved with only one Proportional-Integral (PI) compensator. The proposed controller is analyzed and the circulating current impedance is derived for paralleled systems. The performance of the new control strategy is experimentally verified using two parallel connected converters employing Space Vector Pulse Width Modulation (SVPWM) feeding a passive RL load and a 2.2 kW three-phase induction motor load. The obtained test results show a reduction in the current imbalance ratio between the converters in the experimental setup from 53.9% to only 0.2% with the induction motor load.

Novel Control Strategy for a UPQC under Distorted Source and Nonlinear Load Conditions

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.161-169
    • /
    • 2013
  • This paper proposes a novel control strategy for a unified power quality conditioner (UPQC) including a series and a shunt active power filter (APF) to compensate the harmonics in both the distorted supply voltage and the nonlinear load current. In the series APF control scheme, a proportional-integral (PI) controller and a resonant controller tuned at six multiples of the fundamental frequency of the network ($6{\omega}_s$) are performed to compensate the harmonics in the distorted source. Meanwhile, a PI controller and three resonant controllers tuned at $6n{\omega}_s$(n=1, 2, 3) are designed in the shunt APF control scheme to mitigate the harmonic currents produced by nonlinear loads. The performance of the proposed UPQC is significantly improved when compared to that of the conventional control strategy thanks to the effective design of the resonant controllers. The feasibility of the proposed UPQC control scheme is validated through simulation and experimental results.

Active Disturbance Rejection Control for Single-Phase PWM Rectifier with Current Decoupling Control

  • Yan, Ruitao;Wang, Ping
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2354-2363
    • /
    • 2018
  • This paper proposed a novel double closed control strategy for single-phase voltage source pulse width modulation (PWM) rectifier based on active disturbance rejection control (ADRC) and dq current decoupling control. First, the mathematical model of the single-phase PWM rectifier in the d-q axis synchronous rotating reference frame is established by constructing a virtual component using a second-order generalized integrator (SOGI). Then, the mathematical model is simplified according to the active power conservation, and the first-order equation of single-phase PWM rectifier voltage outer loop is acquired. A linear auto-disturbance rejection controller is used to design the voltage outer loop according to the first-order equation. Finally, the proposed control strategy and the traditional PI control are compared and verified by simulation and physical experiments. Both simulation and experimental results confirm that the proposed control strategy has excellent dynamic performance and strong rejection ability to disturbances.

직접토크 제어를 이용한 유도전동기의 센서리스 속도제어에 관한 연구 (A Study on the Sensorless Speed Control of Induction Motor using Direct Torque Control)

  • 윤경국;오세진;김종수;김윤식;이성근;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권8호
    • /
    • pp.1261-1267
    • /
    • 2009
  • 직접토크제어는 일정한 히스테리시스 범위 내에서 전동기의 자속과 토크를 제어하는 방법으로서 최적 스위칭 테이블을 사용한 고정자 전압 공간 벡터에 의해 전동기의 자속과 토크를 제어하게 된다. 그리고 본 논문에서 사용한 센서리스 제어법은 실제 전동기와 수식 모델의 전류가 수렴하도록 고정자 전압을 인가하면 실제 전동기 회전자 속도가 속도 지령치인 수식 모델의 회전자 속도에 접근하는 제어방식이다. 이 방식들을 접목하면 PI 제어기가 필요하지 않는 간단하면서도 강인한 제어를 구현할 수 있는데 본 논문에서는 컴퓨터 모의실험을 통해 이의 유효성을 입증한다.