• Title/Summary/Keyword: PI Controller

Search Result 1,225, Processing Time 0.028 seconds

ADAPTIVE PI FUZZY CONTROLLER FOR INDUCTION MOTOR USING FEEDBACK LINEARIZING METHOD

  • Motlagh, Muhammad Reza Jahed;Hajatipour, Majid
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.514-518
    • /
    • 2005
  • In this paper an adaptive fuzzy PI controller with feedback linearizing meth od is implemented to controlling flux and torque separately in induction motor. In this paper first decoupling of torque and flux which are outputs to be controlled, is achieved by using feedback linearization methodology. Then for reducing the effect of noise and rejection of disturbance, main part of controller which is adaptive PI fuzzy controller, is designed. Coefficients of PI controller are determined by defined fuzzy rules due to error dynamic. Inputs of fuzzy system are defined sliding surfaces which consist of torque and flux errors. The main contribution of this paper is effect reduction of noise and disturbance on torque and flux which is based on fuzzy logic and nonlinear control. At last the effectiveness of the proposed control scheme in presence of noise and load disturbance is simulated and comprised to applying sliding method. The results verify better effectiveness of the proposed method for effect reduction of noise and disturbance.

  • PDF

Design and application of self tuning fuzzy PI controller (자기동조 퍼지 PI 제어기의 설계와 응용)

  • 이성주;오성권;남의석;황희수;이석진;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.238-242
    • /
    • 1991
  • This paper presents an approach to self-tuning PI control of dynamic plants, based on fuzzy logic application. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a fuzzy logic controller, one of the most difficult problem is the selection of linguistic control rules and parameters. To overcome this difficulty, self-tuning fuzzy PI controller (STFPIC) with a hierarchical structure in which the fuzzy PI controller is assigned as the lower level and the rule modification and parameter adjustment as the higher level. The rules and parameters are generated by the adjustment of membership function through performance index(PE). In this paper, the algorithm for of the controller performance is estimated by means of computer simulation.

  • PDF

Design of Fuzzy PI Controller for Variable Speed Drive of Switched Reluctance Motor (SRM의 가변속 구동을 위한 퍼지 PI 제어기 설계)

  • Yoon, Yong-Ho;Park, Jun-Suk;Song, Sang-Hoon;Won, Chung-Yuen;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1529-1535
    • /
    • 2012
  • This paper presents the application algorithm for speed control of Switched Reluctance Motor. The conventional PI controller has been widely used in industrial applications. But it is very difficult to find the optimal PI control gain. Fuzzy control does not need any model of plant. It is based on plant operator experience and heuristics. The proposed fuzzy logic modifier increases the control performance of conventional PI controller. Simulation and experimental results show that the proposed fuzzy control method was superior to the conventional PI controller in the respect of system performance. The experiments are performed to verify the capability of proposed control method on 6/4 salient type SRM.

Design of a Surface-Mounted PMSM Current Controller Using Uncertainty Estimation with a PI Observer (PI 관측기의 불확실성 추정을 이용한 표면부착형 영구자석 동기기의 전류 제어기 설계)

  • Kim, In-Hyuk;Choi, Dae-Sik;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1011-1016
    • /
    • 2011
  • This paper presents a robust current controller for a surface-mounted permanent magnet synchronous motor(SPMSM) by using a PI observer. The decoupling PI(proportional-integral) controller combined with an additional feed-forward compensation has been used for the current controller. The classical feed-forward compensation using velocity information and system parameters is not expected to achieve a robust performance against parameter uncertainties. This paper has adopted a PI observer for the feed-forward compensation to cope with parameter uncertainties without using velocity information. A simple PI observer has been designed to compensate the disturbances that represent velocity coupled terms and parameter uncertainties. Experimental results as well as computer simulations with 630W SPMSM confirm that the proposed approach can deal with the effects of the disturbance and improve the control performance.

Automatic P/PI Speed Controller Design for Industry Servo Drives (산업용 서보 구동 시스템을 위한 자동 P/PI 속도 제어기 설계)

  • 배상규;석줄기;김경태;이동춘
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.616-623
    • /
    • 2003
  • Conventional P/PI speed controller of today's servo drives should be manually tuned the controller switching set-point by trial-and-errors, which may translate the drive system down-time and loss of productivity. The adjustable drive performance is heavily dependent on the quality of the expert knowledge and becomes inadequate in applications where the operating conditions change in a wide range, i.e., tracking command, acceleration/deceleration time, and load disturbances. In this paper, the demands on simple controls/setup are discussed for industry servo drives. Analyzing the frequency content of motor torque command, P/PI control mode switching is automatically performed with some prior knowledge of the mechanical dynamics. The dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of traditional P/PI control scheme, extensive test is carried out on actual servo system.

Smith-Predictor Controller Design Using New Reduction Model (새로운 축소 모델을 이용한 Smith-Predictor 제어기 설계)

  • Choi Jeoung-Nae;Cho Joon-Ho;Hwang Hyung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • To improve the performance of PID controller of high order systems by model reduction, we proposed two model reduction methods. One, Original model with two point $({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$ in Nyquist curve used gradient base method and genetic algorithm. The other, Original model without two point$({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$in Nyquist curve used to add very small dead time. This method has annexed very small dead time on the base model for reduction, and we remove it after getting the reduced model, and , we improved Smith-predictor for a dead-time compensator using genetic algorithms. This method considered four points$({\angle}G(jw)=0,\;-\pi/2,\;-\pi,\;-3\pi/2)$ in the Nyquist curve to reduce steady state error between original and reduced model. It is shown that the proposed methods have more performance than the conventional method.

Design and Analysis of an Improved Decoupling Feedforward Controller for Speed Control of SynRM (초고속 전동기 속도제어를 위한 개선된 비간섭 피드-포워드 제어기 설계 및 해석)

  • Oh, Sung-Up;Kim, In-Soo;Seong, Se-Jin;Choi, Jae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.864-867
    • /
    • 2003
  • In this study, a controller which has a feedforward controller and two additional PI integrators was designed. But if a controller is used by only the integration of a feedforward controller and two additional PI integrators, the capability of a controller will decrease because the decoupling terms of current is feedback as the disturbance. Therefore the feedforward method with the decoupling compensation was proposed. The two additional PI integrators were replaced by two decoupling terms to simplify the calculation. The simulation and experimental using SynRM driving system were performed to verify the design of a improved decoupling feedforward controller.

  • PDF

Design of pre-compensator and PD controller based the PI control system (PI제어계 기반 전치보상기 및 PD제어기의 설계)

  • Ha, Hong-Gon;Lee, Yong-Jae;Han, Dae-Hyun;Heo, Gyeong-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • PID control systems are significantly utilized in industrial fields because of its multiple advantages. Many researches about more effective PID controllers to enhance control system performances have been addressed so far. This paper proposes a novel PI-PD control system with a pre-compensator which is configured with a pre-compensator and PD controller in PIcontrol system. The normal method is applied to the proposed control system for obtaining a simple first-order controller from cancelation of poles and zeros. We design a pre-compensator and PD controller by using parameters of PI controller and the transfer function of a plant. Computer simulation is carried out to demonstrate effectiveness of the proposed control system.

An Optimal Tuning of PI-PD Controller Via LQR (LQR을 사용한 최적 PI-PD제어기 동조)

  • Kang, Keun-Hyoung;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.109-112
    • /
    • 2005
  • This paper presents an optimal and robust PI-PD controller design method for the second-order systems both with dead time and without dead time to satisfy the design specifications in the time domain via LQR design technique. The optimal tuning method of PI-PD controller are also developed by setpoint weighting and neural networks. It is shown that the simulation results show significantly improved performance by proposed method.

  • PDF

Design of Fuzzy-PI Controllers for the Gas Turbine System (가스터빈 시스템을 위한 퍼지-PI 제어기의 설계)

  • Kim, Jong-Wook;Kim, Snag-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1013-1021
    • /
    • 2000
  • This paper suggests fuzzy-PI controllers for a heavy-duty gas turbine. The fuzzy-PI controllers are designed to regulate rotor speed and exhaust temperature of the gas turbine. The controller gains are tuned by genetic algorithm(GA). This paper also proposes a new fitness function of GA using a desired output response. The suggested controller is compared with previous controllers via simulations and it is shown that the rotor speed variation of our controller is smaller than those of previous ones.

  • PDF