• Title/Summary/Keyword: PHC-Pile

Search Result 176, Processing Time 0.024 seconds

Detail Design and Structural Stability Analysis for Automated PHC Pile Cutting Machine (PHC 파일 원커팅 두부정리 자동화 장비의 상세설계 및 구조적 타당성 분석)

  • Yeom, Dong Jun;Hwang, Ji Young;Park, Yesul;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2018
  • The primary objectives of this study are to develop a detail design of automated PHC pile head cutting machine and structural stability analysis of detail design that improves the conventional head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and field study, 2)expert survey and interview, 3)selection of core technology using AHP analysis, 4)deduction of detail design 5) verification of structural stability. As an outcome, it is analyzed that gripper and gripper bearing shaft are structurally stable. Their maximum stresses are shown as 15.93%, 10.58% compared to their yield strength respectively. The results of detail design and structural stability analysis in this study will be utilized for the actual development of the automated PHC pile cutting machine prototype.

Case Study on the Design of Earth Retaining and Retention Wall Using Pre-casted Concreted Pile(PHC) (기성콘크리트말뚝(PHC)을 이용한 옹벽겸용 흙막이설계사례)

  • Han, Jung-Geun;Cho, Young-Ryang;Kim, Sang-Kwi;Park, Sang-Cheol;Eo, Yun-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.3
    • /
    • pp.33-42
    • /
    • 2005
  • The bearing methods using pile of steel itself or reinforced concrete has been applying which in excavated depth was not deep. Also, the retaining wall as resisting structure to lateral force has taken weakness that the cure periods of concreted is long. Recently, with the material cost of steel, the application of cement is more increasing trend. In this study, the design methods of earth retaining and retention wall within the pre-casted concrete pile, PHC(Pretentioned spun High strength Concrete piles), was proposed which in the ground condition of excavated depth was not deep. The typical ground conditions, cohesive and non-cohesive soil, was considered as follows; soil strength as internal friction angle and UU(Undrained Unconsolidation triaxial test) strength, soil reaction and stabilization of structures. The application of design methods could be confirmed through the comparing and analyzing between measured data and utility software for the design.

Safety Evaluation of Horizontal and Vertical Bolted Connection between PHC Piles Using Finite Element Analysis (유한요소해석을 통한 수평 및 수직볼트로 체결된 PHC 파일 연결부의 안전성 평가)

  • Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The safety evaluation of horizontal and vertical bolted connection between PHC piles is presented. The numerical analysis model is constructed using the commercial finite element program, ABAQUS, in which 3D solid element is used to model all the connection devices. The actual bolted connection is idealized by the contact and tie condition given in ABAQUS. Through the finite element analysis, the compression, tensile, bending and shear behaviors of PHC pile connection were analyzed. The safety factor based on Von-Mises and yield stress was calculated for the safety evaluation of each connection devices.

A Study on the Optimal Concrete Mix-proportion Selection of PHC-pile by Using of Air-cooled Blast Furnace Slag Coarse Aggregate (괴재 고로슬래그 굵은 골재 사용에 따른 PHC-Pile용 콘크리트 최적 배합 도출에 관한 연구)

  • Jeon, In Ki;Lee, Joo Hun;Park, Yong Kyu;Kim, Hyun Woo;Yoon, Ki Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.270-271
    • /
    • 2014
  • In this study, a replacement ratio of blast furnace slag coarse aggregate and a water binder ratio by an optimum combination of PHC file was investigated. As a results, the target strength 78.5MPa was altogether satisfied in a mix proportion 28-G100-SG0 and W/B ratio 26 %. The surface rupture was generated in 28-G0-SG100 combination after curing with the autoclave. According to the result of measuring the ingredient, the majority were the MgOH2 hydrate.

  • PDF

A Comparison between predicted and measured values for lateral bearing capacity of PHC pile in weathered Granite soil (화강풍화토 지반에 타입된 PHC 말뚝의 수평지지력에 대한 추정치와 실측치의 비교)

  • 오재화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.144-150
    • /
    • 2000
  • This study dealt with the comparison of lateral baring capacity for vertical PHC pile between predicted and measured values driven in weathered granite soils to build world cup gymnasium in Kwangju area. Recently, the calculation of horizontal bearing capacity of piles foundation has been considered very important for earthquake or wind resistant design in Korea. During this study , Matlock & Reese, Broms and Chang's methods were selected in prediction of lateral resistant of PHC piles. As for case study, the prediction values were compared with 5 measured ones based on ASTM. The result showed that prediction values proposed by Matlock & Reese , Chang and Broms were smaller that real values. Three proposed methods by Matlock & Reese and Chang based on lateral deflection and Broms by ultimated lateral resistance turned out valid in view of engineering practice.

  • PDF

Thermal Influential Factors of Energy Pile (에너지 파일의 열적거동 인자분석)

  • Jeong, Sang-Seom;Song, Jin-Young;Min, Hye-Sun;Lee, Sung-June
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.231-239
    • /
    • 2010
  • This paper presents the thermal conduction analysis (using ABAQUS ver 6.10 and FLUENT ver 6.3.26) of geothermal energy for PHC, steel and copper energy piles by considering subsurface environment, thermal efficiency of grouting materials, and fluid velocity of circulating fluid. Results show that higher thermal efficiency for copper pile is observed followed by steel and PHC piles depending on the grouting materials and subsurface condition. The fluid velocity of 0.6m/s presents most efficient outflow temperature (275.4K) and heat exchange rate (103.1W/m) for the case of PHC pile during 8 hours operation. Analysis of operation schedule concludes that 16 hours of stand-by allows charging geothermal energy following 8 hours operation in winter season is most appropriate with 0.1K of temperature difference from the steady-state condition.

A Case Study of PHC Pile Behavior Characteristics on Dynamic Compacted High Rock Embankment (고성토 암버력 동다짐 지반에 시공된 PHC 말뚝의 거동특성 사례연구)

  • Yu, Nam-Jae;Yun, Dong-Kyun;Bae, Kyung-Tae;Kim, Hyung-Suk;Lee, Dal-Ho;Park, Yong-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.519-526
    • /
    • 2010
  • The construction site for $\bigcirc\bigcirc$ transformer substation was located at a mountain valley. In order to prepare the site, the valley was first filled with crushed rock debris up to 63m. Since the main concern of this project is to minimize differential settlement of the foundation of transformer facilities, dynamic compaction was performed every 7m followed by reinforcement with EMP(Ez-Mud Piling). The EMP is one of bored piling methods, in which a hole is bored by means of air percussion and maintain by injecting Ez-Mud. Then a PHC pile (Pretensioned spun High strength Concrete pile) is embedded and finalized with a hammer. In this study, bearing capacities and long term behavior of a pile installed by EMP were investigated. To achieve these objectives, a series of tests such as static and dynamic load tests were conducted. In addition, a construction quality control standard was proposed based on the test results.

  • PDF

Estimation of field application for the PHC pile backfill recycling In-site soil (현장 발생토를 재활용한 PHC파일 채움재의 현장 적용성 평가)

  • Choi, Hee-Bok;Noh, Chang-Suck;Han, Byung-Kwon;Lee, Hong-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.63-66
    • /
    • 2011
  • The aim of this study is to estimate the field applicability of PBFM to replace in-site soil with pile backfill used to replace the existing cement paste. As results, the flowability, segregation and bleeding, and bond strength of PBFM was a good performance than that of the existing cement paste. But the skin friction of pile by Pile Driving Analyzer (PDA) and compressive strength was slightly decreased than that of the existing cement paste. However, as pile backfill materials, and in terms of economics and environment, the applicability of PBFM is considered very effective.

  • PDF

Characteristics of Dynamic Shear Behavior of Pile-Soil Interface Considering pH Conditions of Groundwater (지하수 pH조건을 고려한 말뚝-지반 접촉면의 동적 전단거동 특성)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.5-17
    • /
    • 2022
  • A pile is a type of medium for constructing superstructures in weak geotechnical conditions. A pretensioned spun high-strength concrete (PHC) pile is composed of high-strength concrete with a specified strength greater than 80 MPa. Therefore, it has advantages in resistance to axial and bending moments and quality control and management since it is manufactured in a factory. However, the skin friction of a pile, which accounts for a large portion of the pile bearing capacity, is only approximated using empirical equations or standard penetration test (SPT) N-values. Particularly, there are some poor research results on the pile-soil interface under the seismic loads in Korea. Additionally, some studies do not consider geoenvironmental elements, such as groundwater pH values. This study performs sets of cyclic simple shear tests using submerged concrete specimens for 1 month to consider pH values of groundwater and clay specimens composed of kaolinite to generate a pile-soil interface. 0.2 and 0.4 MPa of normal stress conditions are considered in the case of pH values. The disturbed state concept is employed to express the dynamic behavior of the interface, and the disturbed function parameters are newly suggested. Consequently, the largest disturbance increase under basic conditions is observed, and an early approach to the failure under low normal stress conditions is presented. The disturbance function parameters are also suggested to express this disposition quantitatively.

Evaluation of Allowable Bearing Capacity of 600 mm Diameter Preboring PHC Piles Using Dynamic Load Test (직경 600mm PHC 매입말뚝의 동재하시험을 통한 허용 지지력 평가)

  • Woo, Gyu-Seong;Park, Jong-Bae;Seo, Mi-Jeong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.61-72
    • /
    • 2016
  • For the construction of high-rise structures and the optimized foundation design, the use of the large-diameter PHC pile has increased. Especially, the use of the 600 mm diameter PHC pile has significantly increased. In this study, for the evaluation of the suitability of the current design practice, the 46 dynamic pile load tests, which were carried out in the 600 mm diameter preboring PHC pile, are analyzed. The end bearing capacity is obtained from the end of initial driving test and the shaft capacity is estimated from the restrike test. The allowable capacities estimated by the dynamic load test are compared with those based on the current design practice. The analyses show that the allowable end bearing capacity evaluated by the dynamic pile load test is greater than the design practice in most piles. The allowable shaft capacity, however, is smaller than the design practice in many piles. The higher end bearing capacity and the smaller shaft capacity may result from the improvement of the drilling equipment and the increase in the penetration depth. Thus, the portion of the end bearing capacity in the total capacity increases.