• 제목/요약/키워드: PHBV

검색결과 26건 처리시간 0.027초

산소전달 속도와 용존산소가 Azotobacter vinelandii UWD의 생분해성 고분자(PHBV) 생산에 미치는 영향 (Effect of Oxygen Transfer Rate and Dissolved Oxygen on the Production of PHBV by Azoto-bacter vinelandii UWD.)

  • 박창호
    • 한국미생물·생명공학회지
    • /
    • 제26권6호
    • /
    • pp.529-536
    • /
    • 1998
  • 용존산소(D.O.) level은 유기산 및 포도당을 혼합한 배지에서 Azotobacter vinelandii UWD의 생장 및 생분해성 고분자(PHBV) 생성에 큰 영향을 주었다. 용존산소 level이 높은 경우(5% D.O.)는 낮은 경우(1% D.O.)에 비해 세포의 생장속도가 약 2배 증가하였으나 PHBV 생성은 D.O.가 낮은 경우 62.3 wt%로 D.O.가 높은 경우에 비해 약 17배 증가하였다. 그러나 B.O. level은 통기(aeration)에 의한 A. vinefandii UWD의 발효특성 연구에 적합한 기준이 아니었다. 공기공급속도를 고정하고 교반속도만을 변화시키는 통기법으로 산소전달속도를 감소시켰을 때 이 균주는 산소소모속도를 그에 따라 대응 감소시킴으써 겉보기 D.O.를 높게(5%) 유지할 수 있었고 이 때 생장이 느려지고 PHBV 양은 57.3 wt%로 증가하였다. 통기가 세포생장 및 PHBV 생성에 미치는 영향을 일관성 있게 설명할 수 있는 기준은 D.O. level이 아니라 산소전달속도였으며 비생장속도는 산소전달속도에 비례하여 증가하였고 PHBV 생산량은 산소전달속도에 반비례하였다.

  • PDF

Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment

  • Lee, Ik-Sang;Kwon, Oh-Hyeong;Wan Meng;Kang, Inn-Kyu;Yoshihiro Ito
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.374-378
    • /
    • 2004
  • The biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as nanofibrous mats by electrospinning. Image analysis of the electrospun nanofibers fabricated from a 2 wt% 2,2,2-trifluoroethanol solution revealed a unimodal distribution pattern of fiber diameters with an observed average diameter of ca. 185 nm. The fiber diameter of electrospun fabrics could be controlled by adjusting the electro spinning parameters, including the solvent composition, concentration, applied voltage, and tip-to-collector distance. Chondrocytes derived from rabbit ear were cultured on a PHBV cast film and an electrospun PHBV nano-fibrous mat. After incubation for 2 h, the percentages of attached chondrocytes on the surfaces of the flat PHBV film and the PHBV nanofibrous mat were 19.0 and 30.1 %, respectively. On the surface of the electrospun PHBV fabric, more chondrocytes were attached and appeared to have a much greater spreaded morphology than did that of the flat PHBV cast film in the early culture stage. The electro spun PHBV nanofabric provides an attractive structure for the attachment and growth of chondrocytes as cell culture surfaces for tissue engineering.

천연 향균물질 함유 나노섬유의 제조 및 특성분석 (Preparation and Characterization of Electrospun Nanofibers Containing Natural Antimicrobials)

  • 김영진;김상남;권오경;박미란;강인규;이세근
    • 폴리머
    • /
    • 제33권4호
    • /
    • pp.307-312
    • /
    • 2009
  • 전기방사법으로 식물성 폴리페놀을 함유하는 PHBV 나노섬유를 제조하였으며, 얻어진 나노섬유의 평균직경은 340-450 nm였다. 폴리페놀의 첨가에 의해 나노섬유의 직경이 증가하였으며 폴리페놀의 첨가량도 나노섬유의 직경 변화에 영향을 미쳤다. 이는 PHBV와 폴리페놀 사이의 수소결합에 기인하는 것으로 확인되었다. 제조된 나노섬유를 이용한 ATR-FTIR 분석 결과 PHBV와 폴리페놀 사이에 수소결합이 존재하는 것을 확인할 수 있었고, XRD 분석 결과 폴리페놀의 첨가에 의해 PHBV 나노섬유의 결정성이 높아졌다. 이들 폴리페놀을 함유하는 나노섬유는 우수한 항균특성을 보였다.

Fabrication and characterization of PCL/TCP-coated PHBV composite multilayer as a bone plate

  • Kim, Yang-Hee;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.39.2-39.2
    • /
    • 2009
  • In this work, Poly($\varepsilon$-Caprolactone)(PCL) andpoly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) mats were fabricated usingelectrospinning process. The electrospinning process is a simple and efficient method to fabricate the nanofibrous mats. PCL and PHBV is a kind of biodegradable polymer but their mechanical properties aren't good. For improving mechanical properties, PHBV mats were coated by TCP. Using PCL mats and TCP-coated PHBV composite mats, a bio-resorbablebone plate were made by pressing. Detailed micro-structural characterization was done by SEM techniques. Tensile strength and bending strength were also evaluated for mechanical properties. The cytotoxicity evaluation ofPCL/TCP-coated PHBV composite multilayer was done by MTT assay. The evidence obtained in this work implies the potential for use as a biodegradable boneplate.

  • PDF

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Graphene Oxide Nanocomposite Films: Thermomechanical Properties, Oxygen Transmission Rates, and Hydrolytic Degradation

  • You, Eun Jung;Ha, Chang-Sik;Kim, Gue-Hyun;Lee, Won-Ki
    • 한국환경과학회지
    • /
    • 제26권1호
    • /
    • pp.1-10
    • /
    • 2017
  • In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene oxide (GO) nanocomposite films containing various content of GO were prepared using solution casting method. The effect of GO content on Young's modulus and dispersion of GO in PHBV matrix was investigated. Also, the thermomechanical properties, oxygen transmission rates and hydrolytic degradation of PHBV/GO nanocomposite films were studied. The addition of GO into PHBV improves the Young's modulus and decreases thermal expansion coefficient. The improvement can be mainly attributed to good dispersion of GO and interfacial interactions between PHBV and GO. Furthermore, PHBV/GO nanocomposite films show good oxygen barrier properties. PHBV/GO nanocomposites show lower hydrolytic degradation rates with increasing content of GO.

막걸리 주박 가수분해 산물과 propionic acid를 탄소원으로 이용한 Bacillus sp. EML-5020 균주로부터 poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 생합성 (Production of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Bacillus sp. EMK-5020 Using Makgeolli Lees Enzymatic Hydrolysate and Propionic Acid as Carbon Sources)

  • 권경진;김종식;정정욱
    • 생명과학회지
    • /
    • 제32권7호
    • /
    • pp.510-522
    • /
    • 2022
  • Poly (3-hydroxyalkanoates) (PHA)는 탄소원과 에너지원으로서 미생물이 과립형태로 생합성하는 열가소성 플라스틱이다. PHA 중 가장 연구가 많이 된 polyhydroxyburyrate (PHB)는 높은 결정성과 부서지기 쉬운 성질로 인해 사용 및 응용범위가 제한적이다. 따라서 본 연구에서는 polypropylene과 좀 더 유사한 성질을 지닌 PHA를 생합성하고자, 3-hydroxybutyrate와 3-hydroxyvalerat의 공중합체인 poly (3-hydroxybutyrate-co-3-hydroxyvalerat) (PHBV)를 생합성하는 Bacillus sp. EMK-5020 균주를 토양에서 분리하였다. 플라스크로 배양한 결과, Bacillus sp. EMK-5020 균주는 효소를 이용한 막걸리 주박 가수분해산물(enzymatic makgeolli less hydrolysate, MLEH)에 포함된 환원당(환원당MLEH)을 단일 탄소원으로 이용하여 1.3%의 3HV가 함유된 PHBV를 생합성하였으며, 보조탄소원으로 첨가한 propionic acid의 양이 증가할수록 3HV의 함량이 증가하여 최대 48.6%의 3HV가 포함된 PHBV를 합성하였다. 이 결과를 바탕으로 환원당MLEH (20 g/l)와 propionic acid (1 g/l)를 각각 주 탄소원 및 보조탄소원으로 이용하여 3 l 발효기에서 균주를 72시간 배양한 결과 6.4 g/l DCW와 8.9% 3HV를 함유하는 PHBV (MLEH-PHBV)를 50 wt% 생합성함을 확인하였다. 겔 투과 크로마토그래피 분석을 통해 MLEH-PHBV의 평균 분자량은 152 kDa으로 standard PHBV의 평균 분자량(314 kDa)에 비해 절반으로 감소한 것을 확인하였으며, 열중량을 분석한 결과 MLEH-PHBV의 분해 온도가 standard PHBV보다 20℃ 높은 273℃임을 확인하였다. 결론적으로 본 연구에서는 Bacillus sp. EMK- 5020균주를 이용하여 MLEH 및 propionic acid를 탄소원으로 사용하여 다양한 3HV 분획을 함유하는 PHBV생합성할 수 있었으며, 대량배양을 통해 생합성된 8.9% 3HV를 함유한 PHBV-MLEH는 standard PHBV (8% 3HV)에 비해 높은 열 안전성을 지닌 것을 확인하였다.

Fabrication and characterization of aligned crossply PHBV fibrous mat

  • Kim, Yang-Hee;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.44.1-44.1
    • /
    • 2010
  • poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a bacterially derived copolymer produced by fermentation. PHBV has been attractive because of its potential environmental, pharmaceutical and biomedical applications. Recently, the electrospinning technique has been used to fabricate fibrous mat for biomedical applications such as artificial blood vessel, drug release and scaffolds, because this method is simple and easy to get ultrafine polymer fibers. Depending on speed of rotation drum collector, fiber structure was different. In this work, PHBV fiber was aligned by electrospinnning machine. Furthermore, alignment of PHBV fiber mats was given angle such as $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$. The morphology of each aligned PHBV fiber mat was observed by SEM technique. The mechanical property was evaluated depending on alignment angle. Especially, cell attachment ability depending on alignment of PHBV fiber mats was carried out using MG- 63 osteoblast like cells.

  • PDF

Preparation of PHBV/Collagen Nanofibrous Mats and their Tissue Compatibility Compatibilscaffolds for tissue engineering

  • Meng, Wan;Kim, Se-Yong;Yuan, Jiang;Kim, Jung-Chul;Kwon, Oh-Hyeong;Ito, Yoshihiro;Kang, Inn-Kyu
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.50-51
    • /
    • 2006
  • The nanofibrous scaffolds were obtained by co-electrospinning PHBV and collagen Type I in HIFP. The resulting fiber diameters were in the range between 300 and 600 nm. The nanofiber surfaces were characterized by ATR-FTIR, ESCA and AFM. The PHBV and collagen components of the PHBV-Col nanofibrous scaffold were biodegraded by PHB depolymerase and a collagenase Type I aqueous solution, respectively. It was found, from the cell-culture experiment, that the PHBV-Col nanofibrous scaffold accelerated the adhesion of the NIH 3T3 cell compared to the PHBV nanofibrous scaffold, thus showing a good tissue engineering scaffold.

  • PDF

유기산 및 포도당 혼합배지에서 Azotobacter vinelandii UWD의 생장 및 PHBV 생산에 대한 용존산소의 영향 (Effect of Dissolved Oxygen on the Growth of Azotobacter vinelandii UWD and Production of PHBV in the Mixture of Organic Acids and Glucose)

  • 박창호
    • KSBB Journal
    • /
    • 제13권6호
    • /
    • pp.675-680
    • /
    • 1998
  • In both 7L and 20L fermentor experiments the level of dissolved oxygen (D.O) strongly affected growth and PHBV production of Azotobacter vinelandii UWD. A higher D.O. increased carbon substrate consumption rate and cell growth rate with a similar residual biomass production. However, a lower D.O. was a much better condition for PHBV production. In a 20L fermentor experiments controlled at 5% D.O. cell growth rate was about twice faster(0.555 hr-1 and 0.260 hr-1 at the acid and the glucose phase, respectively) with an equal amount(4.5 g/L) of residual biomass production. However, PHBV content in the cell(62.3 wt%) increased 17.3 times at 1% D.O.

  • PDF

Effect of Poly(3-hydroxibutyrate-co-3-hydroxivalerate) Surface with Different Wettability on Fibroblast Behavior

  • Lee, Sang-Jin;Lee, Young-Moo;Khang, Gilson;Kim, Un-Young;Lee, Bong;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제10권3호
    • /
    • pp.150-157
    • /
    • 2002
  • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30~40 degree, increased hydrophilicity. due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [$^3$H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettabilily of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.